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Abst rac t  

It is shown that switching among stable linear systems 
results in a stable system provided that switching is 
“slow-on-the-average.” In particular, it is proved that 
exponential stability is achieved when the number of 
switches in any finite interval grows linearly with the 
length of the interval, and the growth rate is suffi- 
ciently small. Moreover, the exponential stability is 
uniform over all switchings with the above property. 
For switched systems with inputs this guarantees that 
several input-to-state induced norms are bounded uni- 
formly over all slow-on-the-average switchings. These 
results extend to classes of nonlinear switched systems 
that satisfy suitable uniformity assumptions. In this 
paper it is also shown that, in a supervisory control con- 
text, scale-independent hysteresis can produce switch- 
ing that is slow-on-the-average and therefore the results 
mentioned above can be used to study the stability of 
hysteresis-based adaptive control systems. 

1 Introduction 

A Consider a family of R x R stability matrices A = { A p  : 
p E ‘P} indexed by the parameter p taking values on 
a set ’P. It is well known that, even if each matrix in 
A is asymptotically stable, the time-varying switched 
system 

x = A,x (1) 

may have unbounded solutions for some “switching sig- 
nals” U .  Here, a switching signal is simply a piecewise 
constant signal taking values on the index set ’P. How- 
ever, it is also known that (1) is exponentially stable 
if the interval between any two consecutive discontinu- 
ities of U is sufficiently large. 
Given a positive constant T D ,  let S[T~] denote the set of 
all switching signals with interval between consecutive 
discontinuities no smaller than TO. The constant TO 
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is called the (fixed) dwell-time. I t  was shown, e.g., in 
[l, Lemma 21, that one can pick TO sufficiently large so 
that (1) is exponentially stable for every c E S[rg]. In 
fact, there exist positive constants c, X such that 

where’ Q0(t,  7) denotes the state transition matrix of 
(1). In this paper we show that a similar result still 
holds when S [ T D ]  is enlarged to contain signals that 
occasionally have consecutive discontinuities separated 
by less than TD,  but for which the average interval be- 
tween consecutive discontinuities is no less than rg. 
We proceed to formalize this concept of “average dwell- 
time”. For each switching signal U and each t > T > 0, 
let N,( t ,  T) denote the number of discontinuities of U 

in the open interval (T, t ) .  For given N O ,  rg > 0, we 
denote by  save[^^, NO] the set of all switching signals 
for which 

t - T  

TD 
N&, T) 5 No + -. 

The constant TD is called the average dwell-time and 
No the chatter bound. Clearly, s [ ~ ]  C Save[TDr 11. 
In this paper we show that, if TO is sufficiently large, a 
bound like (2) actually holds for every U E Save [ 70, No], 
with arbitrary NO, and not only for the switching sig- 
nals in S [ T ~ ] .  
Systems like (1) arise in an adaptive context when 
a high-level, logic-based supervisor orchestrates the 
switching between a family of candidate controllers so 
as to achieve some desired behavior for the closed-loop 
system [a, 3, 1, 4, 5,  6, 7, 8,  9, 10, 11, 12, 131. The 
need for switching usually arises from the fact that no 
single candidate controller would be capable, by itself, 
of guaranteeing stability and good performance when 
connected with a poorly modeled process. In several 
of these algorithms the supervisor guarantees, by con- 
struction, that there is a minimum time TO between 
consecutive switchings [2, 3, 1, 4, 5, 6, 71. The dwell- 
time TD is then a design parameter2 chosen so that (1) 

‘Given a matrix A, we denote by IlAll the largest singular 
value of A. 

21n [l, 51 the dwell-time is actually chosen arbitrarily and (1) 
is then “massaged” by output injection to make it exponentially 
stable for that particular dwell-time. 
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is exponentially stable. 
Dwell-time switching supervisors force every candidate 
controller to remain in the loop for, a t  least, TD units 
of time, thus guaranteeing a fixed dwell-time of TO. 

Unfortunately, with nonlinear system this may lead to 
finite escape of the closed-loop. Adaptive switching 
algorithms for nonlinear system have therefore avoided 
a fixed dwell-time, and have been mostly3 based on 
hysteresis switching [15, 161, or on its more recent scale- 
independent version [9, 171. 
To date, the analysis of algorithms based on hystere- 
sis switching relied heavily on showing that switching 
stops in finite time [8, 9, 10, 11, 12, 131. However, in 
the presence of noise and disturbance inputs, this is 
hardly the case. In fact, the only known switching al- 
gorithms for which switching can be proved to  stop in 
finite time, even in the presence of noise/disturbances, 
are those for which an upper bound on these signals is 
known a priori, or effectively estimated online [3, 181. 
Unfortunately, even in the noiseless case, these algo- 
rithms usually lead to bad transient responses. 
It turns out that, making use of the results in [17], one 
can show that, although scale-independent hysteresis 
switching does not guarantee the existence of a fixed 
dwell-time between switchings, it can produce switch- 
ing that is slow-on-the-average. This allows us to an- 
alyze supervisory control switching algorithms based 
on scale-independent hysteresis, even in the presence 
of noise. To the best of our knowledge, this is the first 
time that an hysteresis-based switching algorithm is 
analyzed without relying on switching stopping. 
This paper is organized as follows. In Section 2, we 
formalize the notion of exponential stability, uniform 
over a class of switching signals. We show that with 
this type of stability one can compute bounds on sev- 
eral induced input-testate norms that are uniform over 
the same class of switching signals. Section 3 contains 
the main result of this paper, namely that, for linear 
systems, slow average dwell-time guarantees uniform 
exponential stability. In Section 4, this result is ex- 
tended to certain classes of nonlinear systems. Section 
5 makes use of previous results in the analysis of a su- 
pervisory control algorithm that uses scale-independent 
hysteresis switching logic. Finally, Section 6 contains 
some concluding remarks and directions for future re- 
search. The reader is referred to [19] for the proofs of 
some of the results presented here. 

2 Uniform Stability 

Consider again the switched system 

x = A,x. (1) 
3An exception is the supervisor based on dwell-time switching 

described in [14]. However, because of finite escape, the stability 
results given are only semi-global. 

Given some family of piecewise constant switching sig- 
nals S, we say that (1) is uniformly exponentially stable 
over S if there exist positive constants c and X such 
that, for each U E S, 

Il@,(t, T ) I I  5 ce-x(t-T),  v t z r > o ,  

where @,(t, T )  is the state transition matrix of (1). 
When we want to emphasize the rate of decay in the 
above bound we add that (1) has stability margin A .  
Take now a bounded family of n x m matrices L3 = { B, : 
p E P}, also parameterized by the elements of the index 
set P ,  and consider the m-input system 

i = A,z + B,u 

where U : [0, CO) + Rm denotes some piecewise contin- 
uous input and U some switching signal in S. We show 
next that uniform exponential stability of (1) over S 
implies that several induced norms of (3) are uniformly 
bounded over S. 
Given a nonnegative constant A, we say that (3) 
has input-to-state ext-weighted, &-induced norm uni- 
formly bounded over S if there exist finite constants g, 
go such that, for each piecewise continuous input U and 
each U E S, 

a 

(3) 

we say that (3) has input-to-state eAt -weighted, C,- 
induced norm uniformly bounded over S ,  and if (4) is 
replaced by 

we say that (3) has input-to-state ext-weighted, C2- 
to-.&-induced norm uniformly bounded over S. The 
finiteness of the three induced norms above is crucial 
to the analysis of adaptive switching algorithms, espe- 
cially when noise and unmodeled dynamics are taken 
into account (cf. Section 5 and [3, 1, 4! 5, 6 ,  7, 191). 
The following Lemma is proved in [19]. 

Lemma 1 Given a family S of piecewise constant 
switching signals, if (1) is uniformly exponentially sta- 
ble over S ,  with stability margin XO, then, for any 
X E [O,Xo), (3) has input-to-state ext-weighted. C 2 -  
induced norm uniformly bounded over S. Similarly for 
the L, and &-to-.& induced norms. 

4Given a vector z, we denote by 11x11 the Euclidean norm of 
2. 
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3 Average Dwell Time 

Let us recall that, for given NO,TD > 0, '!ave[TD,No] 
denotes the set of all switching signals with average 
dwell time TD and chatter bound No. The main result 
of this paper is that, for any family of n x n stability 
matrices A = { A ,  : p E P } ,  there is always an average 
dwell time TD such that (1) is uniformly exponentially 
stable over Sa,,[r~, N O ] ,  for any chatter bound NO.  The 
next theorem formalizes this observation. 

Theorem 2 Given a compact set of n x n matrices 
A = { A ,  : p E P )  and Q positive constant XO such 
that A, + & I  is asymptotically stable for each p E P ,  
then, for any X E [O,Xo), there is Q finite constant 
rb such that (1) is uniformly exponentially stable over 
SaVe[r~, NO] with stability margin A, for any average 
dwell-time 

Before proceeding notice that, since each matrix A, + 
X O I  is asymptotically stable, there is a set of n x n, 
symmetric, positive definite matrices Q = {Q, : p E P }  
such that 

A 

A 

2 r; and any chatter bound NO > 0.  

A 

Qp(Ap + X o I )  + (Ap + XoI) 'Qp = -1, P E  P.  (5) 

Moreover, since A is compact, Q is also compact. We 
therefore conclude that there is a family of Lyapunov 
functions 

A A V = {V, : V,(x) = x'Qpx, p E P }  

for the time-invariant systems i = Apz, p E P ,  with 
the following properties: 

(i) Each V, is continuous and decreases exponen- 
tially along solutions to the time-invariant sys- 
tem i = A,z. In particular, 

%A,x 5 -2XoV,, Qx E R", p E P .  (6) 
d X  

(ii) There are functions a, (I. of class5 K, such that, 
for each p E P, 

Q(ll41) I VP(Z) I ~(l l4l)> vz E Rn- (7) 

(iii) There is a positive constant ,U such that 

V,(z) I ,UV(Z), VZ E R", Plq E p .  (8) 

Equation (6) is a straightforward consequence of (5) 
and equations (7) and (8) hold with 

5We denote by I the set of all continuous functions a : 
[O,m) 4 [O,co) that are zero at zero, strictly increasing, and 
continuous, and by IC, the subset of IC consisting of those func- 
tions that are unbounded. 

where urnin [Q] denotes the smallest singular value of 
Q E Q and u,,,[Q] the largest singular value of 0 E Q. 
In the above definitions the supremum and infimum are 
actually a maximum and minimum, respectively, due 
to the compactness of Q. The existence of a family 
of Lyapunov functions with the above properties is the 
key technical result used in [19] to prove Theorem 2. 

4 Nonlinear Switched Systems 

In the sequel we extend the previous results to certain 
classes of nonlinear switched systems. To this effect 
consider a family F = {Fp : p E P }  of nonlinear maps 
from R" to itself such that Fp(0) = 0, p E P .  For 
each piecewise constant switching signal a we can then 
define the following switched non-linear system 

A 

2 = F,(x). (9) 

The objective of this section is to derive conditions un- 
der which (9) is asymptotically stable in a uniform way 
over all slow-on-the-average switchings. 
Given some family of piecewise constant switching sig- 
nals 8, we say that (9) is uniformly asymptotically sta- 
ble ouer S if there exists a function p of class6 KL such 
that, for each U E S, 

IlWll I P(l l4~) l l l  t - TI1 Vt  2 7- 2 0, 

along solutions to (9). When p ( s , t )  is of the form 
ce-xts for some c,  X > 0 we say that (1) is uniformly 
exponentially stable over S which, for the linear case, 
reduces to the definition in Section 2. 
Clearly, for (9) to be uniformly asymptotically stable 
over any set SaVe[q, NO],  TD,  NO > 0, the origin must 
be a globally, asymptotically stable equilibrium point 
of each time-invariant system i = F p ( z ) ,  p E P .  Here 
we actually demand more of the F,: 

Assumption 3 There exist continuously differentiable 
functions V, : Iw" -+ R, p E P ,  positiue constants Xo, 
,U, and functions a, (I. of class K, such that 

Q(ll41) I v,(x) I ~(ll4l)l (11) 
V,(.) I PVXZ)I (12) 

for  each 3: E R" and p ,  q E P .  

Equations (10)-(11) are the standard conditions for V, 
to be a Lyapunov function of i = F p ( z ) .  It should 
be noted that, in light of [20, 211, the exponential de- 
cay suggested by (10) does not really introduce loss of 

6We denote by ICL. the set of continuous functions 0 : [0, m) x 
[O, ca) --t [O, m) which, for each fixed value of the second argu- 
ment, are of class K when regarded as functions of the first ar- 
gument, and that have limT+m ,B(s, T) = 0 for each fixed s 2 0. 
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generality. As for (12), it may, in fact, reduce the set 
of systems to which the results in this section can be 
applied. Since (lo)-( 12) match exactly the equations 
(6)-(8) used to prove Theorem 2,  it is not surprising to 
discover that the following also holds true [19]: 

Theorem 4 Given a set F = { F p  : p E P} of non- 
linear maps from R” to itself for which Assumption 
3 holds, there is a finite constant rz) such that (1) is 
unzformly asymptotically stable over SaVe[r~, NO] ,  for 
any average dwell-time TD 2 T; and any chatter bound 
No > 0.  

A 

5 Supervisory Control 

In this section we show how the previous results can be 
used in the context of supervisory control. We follow 
closely the formulation in [l, 51. 
The problem addressed here is the set-point control of 
an imprecisely modeled process P. In particular, we 
want to generate the control input U to the process so 
as to drive its output y to a constant reference T .  The 
process has two other exogenous inputs that cannot 
be measured: a bounded measurement noise signal n 
and a bounded disturbance d. For simplicity the sig- 
nals U ,  y, n, and d are scalar. P is assumed linear, 
time-invariant, with a stabilizable (through U )  and de- 
tectable realization 

but precise values for Ap, Bp, Cp, Dp are not known. It 
is known, however, that  P’s transfer function T ,  from 
U to y ,  belongs to a family of transfer functions of the 
form N = U p E P  Np ,  where p is an unknown parameter 
taking values in some parameter set P and each Np 
denotes a family of transfer functions centered around 
a known, nominal transfer function up, e.g., 

A 

Here, 6 denotes some small positive constant and b a 
stable transfer function with %,-norm smaller than E .  

For simplicity, in the sequel we assume that E = 0 and 
the set P is finite and equal to { 1,2,. . . , m}. 
The solution proposed in [l, 51 to solve this problem 
is based on certainty equivalence and starts with the 
selection of a family of linear, time-invariant candidate 
controllers C = { K ~  : p E P } .  Each I C ~  would make the 
feedback closed-loop system in Figure 1 asymptotically 
stable if the process transfer function r was known to 
belong to N p .  To avoid pole-zero cancellations it is 
assumed that IP does not have transmission zeros at  
the origin. 
In case we knew to which set Np the actual process 
transfer function T belonged, stability of the closed 
loop could be achieved with a nonadaptive, linear, 

A 

Figure 1: Feedback configuration. 

time-invariant controller with transfer function equal to 
itcp. Since the process transfer function is not known 
in advance we build a “multi-controller” C that effec- 
tively allows switching between all the controller trans- 
fer functions in C. If { (Ap ,  Bp, Cp,  15,) : p E P }  is 
a family of n-dimensional, stabilizable and detectable 
realizations for the transfer functions in C, the multi- 
controller 02 can be defined by 

ic = Aaxg: + Due=, v = Cuxc + DueT, U = U ,  

(14) 
A 

where eT = T - y and U : [O,m) -+ 00 denotes a 
“switching signal” that,  at each instant of time, deter- 
mines which candidate controller is put into the feed- 
back loop. The system that generates the switching 
signal U is called a supervisor. Here we are interested 
in estimator-based supervisors like the one in Figure 2.  
An estimator-based supervisor consists of three blocks: 

_ _ _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
! supervisor 

Figure 2: Supervisory control architecture 

a multi-estimator, a performance signal generator, and 
a switching logic. 
The multi-estimator IE is a linear, time-invariant sys- 
tem whose inputs are the outputs of the process and 
multi-controller and whose outputs are the output esti- 
mation errors ep ,  p E P .  Each ep is a signal that mould 
converge to zero if the process transfer function r wits 
equal to the nominal transfer function vp. The reader is 
referred to [l, 51 for the precise structure of E. Denot- 
ing by z the combined state of the multi-estimator and 
multi-controller (excluding the integrator). the evolu- 
tion of z is determined by 

x = Aox -+ doear (1.5) 
(‘16) eT = C p . 2  + e p * ,  
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where A,) ~ d,, cp! p E 'P are appropriately defined ma- 
trices. illld p -  is the element of P for which T E &;. . 

Equation (15) is obtained from equation (23) in [l] with 
1 = U and (16) is obtained from equation (26) in [l] 
with 1 = p'. Moreover, there is a positive constant 
Xu for which each X o l  + AF is asymptotically stable 
(cf. Remark 4 in [l]). From equation (28) in [l], one 
also concludes that eF* is bounded and 

e"'e,.(r)2dr 5 ctIeZXt + CO, t >_ 0, (17) 

Ilep*(t)II 5 d, + doe-xt, t 2 0, (18) 

where X is any constant in (O,Xo), C O , &  are positive 
constants that  depends only on initial conditions, and 
c,, , d, are positive constants that  depends only on up- 
per bounds on the norms of n and d. 
The performance signal generator (6 takes as inputs the 
output, estimation errors ep, p E P ,  and produces the 
pwforin.ance signals np, p E P defined by 

kP = +e:, np = iip + E,, p E P ,  (19) 

with X E (0,Xo) and E =  > 0 constant. (6 is initialized 
so tha.t i ip(0)  2 0, p E ?. 
The switching logic S generates the switching signal 
c based on the values of the performance signals np,  
p E P. The logic used here is called a scale-independent 
hysteresis switching logic and can be regarded as a hy- 
brid dynamical system Sm whose state and output are 
both U .  To specify Sw i t  is necessary to  first pick a 
positive number h > 0 called a hysteresis constant. 
SW'S internal logic is then defined by the computer 
diagram shown in Figure 3 where, a t  each time t ,  
q = arg minpep np(t). The functioning of SE is roughly 

I' 

A 

Initialize U 

Figure 3: Computer Diagram of S5m. 

as follows. Suppose that a t  some time to, Sw has just 
changed the value of U to  p .  The signal ~7 is then 
held fixed at this value unless and until there is a time 
t l  > to at which (1 + h)n, 5 np for some q E P.  If this 
occurs, U is set equal to  q and so on. 

Supgose now that we define scaled performance signals 
f F  = dn,, with d ( t )  = e2Xt,  t 2 0. From (19) one 
concludes that,  for each t 3 t o  >_ 0, 

A 

?ip(t )  = gP(tO) + e2Xtc, + Jtezx'ep(r)zdT, (20) 
to  

ailcl therefore each ? f p  is always monotone increasing 
and never smaller than E , .  By the Hysteresis Switching 
Theorem [17] we can then conclude that,  for any f? E 'P. 

for 0 5 t o  5 t < T ,  where N,(to,t) denotes the number 
of discontinuities of c on the interval ( t o ,  t )  , and also 

m ( ( l +  h) f l ( t )  - PEP inf %,( to) ) ,  (22) 

for 0 5 t o  5 t < T .  Here we used the fact that 
&(fn(:)(r))  = 2Xe2XT~n+e2X7e2, wherever the deriva- 
tive exists. Now, from (17) and (20) we obtain eP- ( t )  5 

( E =  + c,) + EO, t 2 0, where A EO = CO + jTp.(0). 
From this, (21)-(22) with = p', and the fact that 
? ip ( t0 )  >_ e2xtoc,, p E P ,  we conclude that 

A 

mlog (e2A(t-l0)(1+ 5)  + 2) 
log( 1 + h) 

N,(t,to) 5 l + m +  I 

for every t 2 to 2 0. Since for a ,  b > 0, log(a + b) 5 
log(2a) + log(Zb) ,  we also conclude that 

A m 
No = 1 + m + log(l + h )  1% ($ (1 + 2)) 

Now, because of Lemma 1 and Theorem 2, there is 
a finite constant r i  such that (15) has input-to-state 
ext-weighted L2-to-Lm norm uniformly bounded over 
Save[ril N O ] .  AIf we then choose X and h so that 

2 r; and the out- 
put U of the switching logic is guaranteed to  be in 
Save[rb, N O ] .  From this and (24) one concludes that 
x is bounded and, because of (14) and (16), eT and U 
are also bounded. The boundedness of U and the inter- 
nal state of the process follows from the detectability 
of the cascade formed by the integrator in (14) and the 
process (13). The following can then be stated. 

Theorem 5 There exists a positive constant y such 
that, whenever - 5 y, all signals remain 
bounded, for any bounded n and d, and any initial- 
ization of P, E, @, (6, 'S, with jFp(0) 2 0, p E 'P. 

x 1 5 7 = q, we get 

2659 



6 Conclusions 

We showed that switching among stable linear systems 
results in a stable system provided that switching is 
sufficiently slow on the average. In particular, it was 
shown that exponential stability is achieved when the 
number of switches in any finite interval grows linearly 
with the length of the interval, and the growth rate is 
sufficiently small. This was used to analyze a super- 
visory control algorithm using scale-independent hys- 
teresis switching. The analysis took noise and distur- 
bances into account and, to the best of our knowledge, 
is the first analysis of an hysteresis switching logic that 
does not rely on switching stopping. In a paper under 
preparation, the analysis presented here is extended to 
processes with unmodeled dynamics. 
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