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ABSTRACT

Numerical Studies of Lasing and Electromagnetic Fluctuations

in Open Complex Systems

Jonathan Andreasen

This dissertation explores lasing behavior and the effects of electromagnetic fluctu-

ations in open complex systems in one dimension. It consists of three topics: thermal

electromagnetic field fluctuations in open passive systems, fluctuations due to atomic in-

teractions with external reservoirs in open active systems, and spatially nonuniform gain

distributions in open systems.

Numerical models which do not require prior knowledge of cavity modes are developed

to simulate fluctuations which must accompany associated dissipations. First, thermal

noise is simulated in open cavities due to output coupling. The absorbing boundary of the

numerical grid is treated as a blackbody which emits thermal radiation that penetrates the

cavity. It is demonstrated that in the non-Markovian regime, the buildup of intracavity

field noise depends on the ratio of the cavity field lifetime to the coherence time of thermal

radiation. Second, fluctuations which accompany the dephasing of atomic polarization

and the change of the excited state’s population are simulated in dielectric slab lasers and
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random lasers. This method is based on the Maxwell-Bloch equations for two-level atoms

with real noise terms derived from stochastic c-number evolution equations. In random

lasers, noise is found to influence lasing thresholds. In the transition from amplified spon-

taneous emission to clear lasing oscillation, spectral narrowing around mode frequencies

is observed. Discrete lasing peaks are found to manifest themselves more clearly with

partial pumping even when noise is included.

This leads to a study of the effects of optical gain nonuniformly distributed in random

systems. It is demonstrated that even without gain saturation and mode competition,

the spatial nonuniformity of gain can cause dramatic and complicated changes to lasing

modes. Mode mixing increases as the gain distribution changes gradually from uniform to

nonuniform. Furthermore, new lasing modes are created by nonuniform gain distributions.

They may disappear together with existing lasing modes, thereby causing fluctuations in

the local density of lasing states. Some new lasing modes are examined in detail and found

to exhibit high output directionality, meaning random laser properties may be modified

significantly without changing the underlying structures.
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Preface

Considering that this thesis focuses on studies of the laser (light amplification by

stimulated emission of radiation), it seems appropriate to begin with the thoughts of

a man largely responsible for the conception of the laser. Charles Townes, Nobel Prize

winner in Physics (1964), is also a winner of the Templeton Prize, awarded for exceptional

contribution to affirming life’s spiritual dimension. Invited to speak at Yale University

on the topic of science and religion, Townes remarked that scientists hypothesize based

on principles that ultimately cannot be proven. Thus, like religion, science builds on a

form of faith. This statement is not meant to equate science and religion, but merely to

illustrate that science and religion are not mutually exclusive. Townes went on to exclaim

that many of the scientific breakthroughs he has been privy to revealed the hidden beauty

of God’s creation. Based on my own Christian faith, I too believe nature has much to

reveal about the different aspects of God. C. S. Lewis, the Oxford scholar and well known

Christian apologist, describes this point of view elegantly in The Four Loves,

Nature never taught me that there exists a God of glory and of infinite

majesty. I had to learn that in other ways. But nature gave the word

glory a meaning for me. I do not see how the ‘fear’ of God could have

ever meant to me anything but the lowest prudential efforts to be safe,

if I had never seen certain ominous ravines and unapproachable crags.
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And if nature had never awakened certain longings in me, huge areas of

what I can now mean by ‘love’ of God would never, so far as I can see,

have existed. A true philosophy may sometimes validate an experience of

nature; an experience of nature cannot validate a philosophy. Nature will

not verify any theological or metaphysical proposition; she will help us

to show what it means. And not, on the Christian premises, by accident.

The created glory may be expected to give us hints of the uncreated; for

the one is derived from the other and in some fashion reflects it.

The research presented in this thesis has produced and is a result of “certain longings”

in myself and colleagues around me. As for myself, the longing to understand basic pro-

cesses of nature is not the result of a personal decision, but an awakened quality, somehow

already present. That gift and these theoretical investigations, based on mathematical

frameworks that, in themselves, show beauty, have inspired praise. To quote the Psalmist,

“I will praise you, O Lord, with all my heart; I will tell of all your wonders. I will be glad

and rejoice in you; I will sing praise to your name, O Most High.”
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CHAPTER 1

Introduction

1.1. Light Scattering

Light Scattering is a physical process where light interacts with a material. Due to

this interaction, the light is forced to deviate from its original trajectory. Light scattering

is so crucial to our everyday life that without it we cannot see the world around us. Even

so, a reliable and accurate description of light was not assembled until just over 150 years

ago. James C. Maxwell formulated the modern laws of electromagnetism which govern the

behavior of light [1]. These laws, now termed Maxwell’s equations, are important because

they are able to describe all forms of electromagnetic (EM) phenomena. Moreover, they

have withstood testing by over a century’s worth of intense research [2]. Maxwell’s original

equations were reduced later on to a set of much simpler equations by Heaviside [3] and

developed into their modern form by Gibbs [4].

In this thesis, electric conductivity, magnetic loss, and magnetic current density are

not considered and thus, shall be neglected. We also set the magnetic permeability to the

free-space permeability µ = µ0. Thus, we are left with the following form of Maxwell’s

equations,

(1.1)
∇ · E = 0 ∇ ·H = 0

∇× E = −µ0 (∂H/∂t) ∇×H = ǫ0ǫ (∂E/∂t) + J,
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where E and H are the electric and magnetic fields, respectively, J is the electric current

density, ǫ0 is the permittivity of free space, and ǫ is the dielectric constant. For a time-

independent description of EM waves, the electric and magnetic fields may be assumed to

evolve as E = E0 exp(−iωt), H = H0 exp(−iωt), where ω is the field frequency. Equation

1.1 then reduces to the wave equation, or Helmholtz equation

(1.2) [∇2 + ǫk2]E = 0,

where k = ω/c is the field wavevector.

1.1.1. Scattering Cross Section

A solution of Eq. 1.2 has a flux, or current K through a surface S defined by

(1.3) K = Im

∫

dS · E∗∇E.

What is usually termed the “differential scattering cross section,” is the ratio of output

flux through the surface within an element of solid angle dΩ to the input flux per unit

surface [5].

(1.4) σ(θ) =
dKout/dΩ

dKin/dS
.

θ is the angle between the deviated trajectory and the original trajectory. Specific values

of σ(θ) require the knowledge of the solution E. Nevertheless, we may define a set of

useful characteristic length scales when light experiences multiple scattering.
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1.1.2. Characteristic Length Scales

When light scatters multiple times, the “scattering mean free path” ℓs is simply defined

as the average distance light travels between two consecutive scattering events. ℓs is

dependent on the density of states and the spatial correlation of the dielectric function

[5]. In our case, scattering is induced by a spatially inhomogeneous dielectric function ǫ(r),

where r is the position variable. We consider a dielectric function where the correlation

function

(1.5) 〈ǫ(r)ǫ(r′)〉 6= 0.

If the correlation range is of the same order of magnitude as the free-space wavelength

λ = 2π/k, then scattering becomes anisotropic. Put more simply, within a certain time

scale τt, scattering occurs in preferred directions. After a time τt has passed, memory of

the incident direction before −τt is lost. The length scale associated with τt is calculated

as ℓt = vgτt, where vg is the group velocity. The quantity ℓt is known as the “transport

mean free path.” It can be shown that

(1.6) ℓt =
ℓs

1 − 〈cos θ〉 .

ℓt can be thought of as the average distance a wave travels before its direction is ran-

domized. Due to the term 〈cos θ〉, which can be found through the differential scattering

cross section of Eq. 1.4, ℓt > ℓs, as expected. ℓt = ℓs when scattering is isotropic, i.e.,

when scattering has no preferred direction and there is no memory of previous scattering
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events. When scattering does depend on previous events, the light will clearly travel a

larger distance before that memory is erased.

If the size of the system L is smaller than or equal to the transport mean free path

(L ≤ ℓt), the system is in the ballistic regime. In this case, photons travel out of the

system before their directions can be randomized. If ℓt is much smaller than the system

size, but much larger than the field wavelength λ = 2π/k, the system is in the diffusive

regime. In this case, photons are forced on a random walk through the system with

diffusivity D before exiting. If v is the transport velocity of the photons, the average

distance a photon travels before exiting is ℓx = vL2/D. A third regime exists in which

the effective wavelength [6] of light in the random medium is approximately 2πℓs. In

this case, light may be spatially localized, as suggested early on by John [7, 8]. The

localization length ξ itself may be calculated from the dependence of transmission T of

an ensemble of random systems of different lengths as ξ−1 = −d 〈ln T 〉 /dL. Note that in

the localization regime, ξ < L.

Two other length scales that will be of interest in this thesis are the gain length ℓg

and the amplification length ℓp [9]. The gain length is simply the average distance a wave

travels before its intensity has increased by a factor e+1. After the wave has traveled a

distance ℓg, it has undergone a random walk. Thus, the straight line distance from the

beginning of the random walk to the end of the random walk ℓp ≤ ℓg. Without scattering,

ℓp = ℓg. In a three-dimensional system in the diffusive regime,

(1.7) ℓp =

√

ℓtℓg
3
.

The amplification process shall be discussed in the next section.
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1.2. Lasing in Multiple Scattering Systems

LASER is an acronym for “light amplification by stimulated emission of radiation,”

said to be coined by Gordon Gould in 1957. However, concepts which necessarily needed

to be in place for the laser to be realized were developed in part by Albert Einstein.

He calculated the probability coefficients (now termed “Einstein coefficients”) for the

molecular absorption and emission of radiation [10]. Gordon, Zeiger, and Townes took

advantage of these concepts and described a device which could be used as a microwave

amplifier in 1955 [11]. They called this device a MASER (microwave amplification by

stimulated emission of radiation). A few years later, Schawlow and Townes extended their

maser techniques to the visible frequency range of radiation [12], and called the device

an “optical maser.” Gould shortened this to laser [13].

Conventional lasers consist of a resonant cavity and amplifying material [14]. A pump-

ing mechanism excites the amplifying material to provide stimulated emission. The faster

the atoms of the amplifying material can be pumped from their ground state to their

excited state, the higher the emitted intensity of the laser. Such lasers are usually built

to minimize scattering which avoids loss. Loss means a lower emission intensity at the

lasing frequency. Scattered photons are not necessarily lost from the cavity, but from the

particular lasing mode of the cavity. However, if the scattered photons can be contained

inside the laser cavity long enough to make a round trip, light amplification will be en-

hanced by stimulated emission. This recirculation of light, or feedback, allows amplified

output. Light, an EM wave, behaves as any wave in that it may add to another wave con-

structively or destructively. If photons scatter multiple times and do not return to their

initial location after one round trip, it is impossible to form a spatial resonance. This type
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of feedback is termed nonresonant feedback. In this case, the wave intensities merely add

together giving amplification as |AEM |2 + |AEM |2 = 2|AEM |2. However, if scattered pho-

tons return to their initial location on a time-reversed path, light experiences constructive

interference. This constructive interference results in a larger amplification because am-

plitudes add together rather than intensities, i.e., |AEM + AEM |2 = |2AEM |2 = 4|AEM |2.

This type of feedback is termed resonant feedback. The spatial resonance formed in the

laser is called a “lasing mode.” Multiple modes may exist, as shown later, in a random

laser.

1.2.1. Nonresonant Feedback

A laser (although not a random laser) with nonresonant feedback was realized in 1966

[15, 16]. A benefit of a laser with nonresonant feedback is that the average frequency of

emission is stable. This is so because the average frequency only depends on the transition

frequency of the gain atoms and not on the spatial resonances formed by the laser cavity.

Because the frequency is independent of the dimensions of the laser system, this makes it

possible to develop an optical frequency standard [17].

As the pumping rate increases, the spectral width of this peak narrows. The drawback

is that the linewidth of the atomic resonance is typically much larger than the linewidth of

a lasing mode formed by a spatial resonance of the laser cavity. The frequency dependence

of the gain length ℓg gives the highest photon generation rate at the peak of the gain

spectrum. Due to the independence of the transport mean free path ℓt on frequency (at

least within the gain spectrum), the loss rate of photons within the gain spectrum is fairly

constant. With an increased pumping rate, the generation rate of photons nearest the
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atomic transition frequency matches the loss rate first. Outside this frequency region, the

generation rate of photons is still less than the loss rate. This allows the photon density

around the atomic transition frequency to build up quickly. The increase of photon density

near the maximum of the gain spectrum results in a drastic narrowing of the emission

linewidth.

Another phenomenon which possesses similar characteristics as mentioned above is

amplified spontaneous emission (ASE). A spectrum resulting from ASE also narrows as

the pumping rate is increased. However, the net gain available during the process of ASE

is less than the loss rate from leakage out of the laser cavity. Lasing with nonresonant

feedback occurs with a gain greater than the leakage loss rate.

To find a condition on the system dimensions required for lasing with nonresonant

feedback, an examination using the diffusion equation may be undertaken. Though in-

terference is neglected in the diffusion equation, it may be considered as an accurate

description since feedback does not depend on interference. As discussed in Sec. 1.1.2,

when L ≫ ℓt ≫ λ, the system is in the diffusive regime. In this case, the energy density

of photons W (~r, t) may be described by the diffusion equation. This description ignores

the wave nature of light and treats photons as particles. The system under consideration

is in the nonsteady-state diffusive regime [18] in that the energy density of photons varies

in time due to multiple scattering and gain. Thus, we may employ Ficke’s second law

with the addition of gain. The photon energy density must increase with the rate v/ℓg

proportional to the current energy density in the presence of uniform and linear gain. The
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diffusion coefficient is given by D = vℓt/3. The diffusion equation is then

(1.8)
∂W (~r, t)

∂t
= D∇2W (~r, t) +

v

lg
W (~r, t).

Letokhov solved [19] the diffusion equation and found the condition on the system

volume L3 necessary to achieve an exponential increase in the photon energy density.

The threshold is

(1.9) L3 =

(

ℓtℓg
3

)3/2

.

Basically, a photon must travel through the random medium long enough to generate at

least one extra photon before exiting the system, i.e., ℓx ≥ ℓg. Quickly examining this

inequality also yields Eq. 1.9.

ℓx ≥ℓg

3L2

ℓt
≥ℓg

L ≥
√

ℓtℓg
3
.(1.10)

This prediction was verified experimentally by Lawandy et al. [20, 21].

From the discussion of length scales in the previous section, diffusion occurs when

ℓt ≪ L < ξ. In 1D, however, diffusion cannot occur. Traveling through layers of a

spatially varying index of refraction results in a series of reflections and transmissions of

the wave. If the reflections are weak enough, the wave may travel through multiple layers

before the direction is reversed (in 1D, this means it has been “randomized”). This length
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was already defined as the transport mean free path ℓt. But because the wave returns on

its original path and this same process will occur until the wave intensity is depleted, this

length scale is also close to the localization length ξ (see [22] for a precise mathematical

argument). Thus, since ξ ≈ ℓt, the diffusion condition above may not be satisfied and the

only regimes available in 1D are the localization regime ξ < L and the ballistic regime

ξ > L. In this thesis, we shall mostly concentrate on the ballistic regime. Based loosely

on Letokhov’s argument above, one can say a larger amount of gain is required for lasing

to occur in the ballistic regime.

1.2.2. Resonant Feedback

A random laser with resonant feedback was first realized by Cao et al. [23, 24] and a

short time later in various other systems [25, 26, 27]. Emission spectra in these cases

are characterized by complex fine structures, as opposed to the relatively broad emission

spectra obtained from lasing with nonresonant feedback. As discussed earlier, these nar-

row spectral lines arise from recurrent light scattering [28] resulting in the formation of

spatial resonances. The emitted light is coherent, with similar characteristics of a con-

ventional laser, but in a medium more easily made (e.g., by grinding a laser crystal [29]

or even using chicken breast [30]). In this thesis, we shall see the formation of such reso-

nances numerically. Complex fine structures are observed to rise out of a broad spectrum

background as the pumping rate is increased.

There are two major regimes of interest concerning lasing with resonant feedback: (i)

strongly scattering regime, (ii) weakly scattering regime (see [31] for a general overview).

When there is multiple scattering, strong scattering makes it easier for photons to return
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to the same coherence volume (∼ λ3) visited before. This provides resonant feedback for

lasing since it is extremely likely for photons to return to the beginning of their random

walk. However, lasing with resonant feedback may also occur when scattering is weak

[25, 26, 32, 30, 33].

Due to some confusion [30] over what constitutes an optical cavity in a weakly scat-

tering system, Wu et al. investigated the matter experimentally and numerically [33].

Interference of light, which is typically ignored in the diffusion equation, was found to be

significant even in weakly scattering systems. As mentioned earlier, for lasing to occur at

all in weakly scattering systems, optical gain needs to be very large. Thus, even though

scattering may be unlikely within the spatial gain region, weak feedback can greatly am-

plify the little light that is scattered. The interference of this scattered light determines

the lasing frequency. They showed numerically that lasing may occur between only 2 scat-

terers. Because amplified spontaneous emission (ASE) may also produce sharp spectral

lines [34], Wu and Cao showed that ASE spikes and lasing peaks are statistically different

and that lasing peaks have a larger threshold [35, 36]. This information shall be useful

as we investigate the influence of noise on random lasers.

1.2.3. Spatially Nonuniform Gain Distributions

From the previous two sections, we have seen that lasing modes in random media behave

quite differently depending on the scattering characteristics of the media. In the strongly

scattering regime, lasing modes have a nearly one-to-one correspondence with the local-

ized modes of the passive system [37, 38]. Due to small mode volume, different localized

modes may be selected for lasing through local pumping of the random medium [39, 37].
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The nature of lasing modes in weakly scattering open random systems is still under dis-

cussion [40]. In systems which are diffusive on average, prelocalized modes may serve as

lasing modes [41]. In general, however, the quasi modes of weakly scattering systems are

very leaky. Hence, they exhibit a large amount of spatial and spectral overlap. For inho-

mogeneous dielectric systems with uniform gain distributions, even linear contributions

from gain induced polarization bring about a coupling between quasi modes of the passive

system [42, 43]. Thus, lasing modes may be modified versions of the corresponding quasi

modes. However, Vanneste et al. found that when considering uniformly distributed gain,

the first lasing mode appears to correspond to a single quasi mode [44]. The study was

done near the threshold pumping rate and nonlinear effects did not modify the modes

significantly. Far above threshold, it was found that lasing modes consist of a collection

of constant flux states [45]. Mode mixing in this regime is largely determined by nonlinear

effects from gain saturation.

Remaining near threshold, pumping a local spatial region, and including absorption

outside the pumped region found lasing modes to differ significantly from the quasi modes

of the passive system [46]. This change is attributed to a reduction of the effective system

size. More surprisingly, recent experiments [30, 33] and numerical studies [47] showed the

spatial characteristics of lasing modes change significantly by local pumping even without

absorption in the unpumped region. It is unclear how the lasing modes are changed

in this case by local pumping. Here, we carry out a detailed study of random lasing

modes in a weakly scattering system with a nonuniform spatial distribution of linear gain.

Mode competition depends strongly on the gain material properties, e.g., homogeneous

vs. inhomogeneous broadening of the gain spectrum. Ignoring gain saturation (usually
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responsible for mode competition) and absorption, we find that spatial nonuniformity of

linear gain alone can cause mode mixing. We decompose lasing modes in terms of quasi

modes and find them to be a superposition of quasi modes close in frequency. The more

the gain distribution deviates from being uniform, more quasi modes contribute to a lasing

mode.

Furthermore, still considering linear gain and no absorption outside the gain region,

we find that some modes stop lasing no matter how high the gain is. We investigate how

the lasing modes disappear and find that new lasing modes may appear as well. The

new lasing modes typically exist for specific distributions of gain and disappear as the

distribution is further altered. They appear at various frequencies for several different

gain distributions without including absorption or nonlinearity.

Because of the randomness, it is difficult to intentionally produce lasing modes in

random lasers with desirable properties. In a conventional laser, the available lasing

modes are typically fixed once the cavity is made. Finer control over lasing properties

can be obtained, for example, by carefully placing the gain medium in a cavity to reduce

the lasing threshold [48] or using specific pumping profiles to select lasing modes with

desirable properties [49, 50, 51, 52]. However, once the laser cavity is made, it is

very difficult to obtain new lasing modes that have no correspondence to the resonant

modes of the cold cavity if nonlinearity is negligible. To have more control over random

laser properties, the structures themselves may be adjusted by selecting the scatterer size

[53, 54, 55, 56, 57] and separation [58, 59], changing the scattering structure with

temperature [60, 61] or electric field [62], or creating defects [63]. For random lasers

operating in the localization region, spatially non-overlapping modes may be selected for
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lasing through local pumping of the random system [64]. In the case of diffusive random

lasers, far above the lasing threshold, nonlinear interaction between the light field and

the gain medium alters the lasing modes [45]. Without gain nonlinearity, local pumping

and absorption in the unpumped region can also change the lasing modes significantly

[46] because the system size is effectively reduced. Recent experiments [30, 33] and

numerical studies [47] show that even without absorption in the unpumped region, the

spatial characteristics of lasing modes may vary with local pumping. In this case, the

lasing modes still correspond to the quasi modes of the passive system. However, spatial

inhomogeneity in the refractive index can introduce a linear coupling of resonant modes

mediated by the polarization of gain medium [43].

In this thesis, we demonstrate that the new lasing modes do not correspond to the

modes of the passive system or any lasing modes in the presence of uniform gain. They

can lase independently of other lasing modes when gain saturation is taken into account.

Furthermore, the new lasing modes can have highly directional output. These findings

may offer an easy and fast way of dramatically changing the random laser properties

without modifying the underlying structures.

1.3. Fluctuation and Dissipation

The relation between fluctuation and dissipation in systems coupled to external reser-

voirs is so fundamental that it spans many areas of science, from laser physics to botany.

The fluctuation-dissipation theorem states that the damping of a system is actually deter-

mined by the fluctuating forces of the reservoir which also introduces fluctuations into the



30

system [65]. This theorem has its roots in Brownian motion, which provides an instructive

and intuitive picture of the relation between fluctuation and dissipation.

1.3.1. Brownian Motion

The biologist Brown noticed a “peculiar character” in the motions of pollen particles

immersed in water [66]. These particle motions are independent of each other, irregular

and never cease, dependent on particle size, fluid viscosity, and reservoir temperature,

and independent of particle composition and density [67]. These observations, along with

Einstein’s independently formulated theory [68], would eventually lead to the conclusion

that when a particle is immersed in a fluid, it is pushed in a random way by the much

smaller particles in the reservoir and the velocity of the particle is reduced by a force

proportional to its velocity.

As a simple example, we consider Brownian motion in one dimension by following

the examination by Haken [69]. A force F(t) pushes a particle according to Newton’s

second law of motion F(t) = mv̇(t), where v(t) is the particle’s velocity, v̇(t) is the time

derivative of the velocity, and we take the particle’s mass m = 1. F(t) is composed of

both a frictional force Ff(t) and random pushes forward and backward Fr(t). It can be

expressed as

F(t) =Ff(t) + Fr(t)

= − κv(t) + Ar

∑

j

δ(t− tj)(±1)j,(1.11)

where κ is the damping rate, Ar is the strength each random push, and (±1)j represents

the direction of each push j. The random sequence of times tj are when pushes occur. We



31

assume that there are an equal number of left pushes as right pushes so that 〈Fr(t)〉 = 0.

The fundamental equation for Brownian motion then reads

(1.12) v̇(t) = −κv(t) + Fr(t).

For times t≫ 1/κ, the solution to Eq. 1.12 is

(1.13) v(t) =

∫ t

0

exp[−κ(t− τ)]Fr(τ)dτ.

Averaging over all pushes yields an average velocity of zero [〈v(t)〉 = 0]. Thus, the particle

does not move on average. However, we are interested in the character of these fluctuations

and not just the behavior on average. For example, although 〈Fr(t)〉 = 0, the correlation

function deduced quickly from Eq. 1.11 is 〈Fr(t)Fr(t
′)〉 = Qδ(t− t′), where Q ∝ A2

r and

is essentially the strength of the fluctuations. In other words, the random force Fr at

time t is only correlated with itself at time t′ = t and is thus proportional to the square

of the strength of each random push. Otherwise, each random push is independent of the

others making the correlation zero. Similarly, examining the correlation function of the

velocity from Eq. 1.13 gives

(1.14) 〈v(t)v(t′)〉 =

∫ t

0

∫ t′

0

exp{−κ[(t− τ) + (t′ − τ ′)]} 〈Fr(τ)Fr(τ
′)〉 dτ ′dτ.

If use the fact that 〈Fr(t)Fr(t
′)〉 = Qδ(t − t′) and continue with the assumption that

t+ t′ ≫ 1/κ, then Eq. 1.14 reduces to

(1.15) 〈v(t)v(t′)〉 =
Q

2κ
exp[−κ(t− t′)].
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We may relate the energy of the particle 1
2
〈v2(t)〉 to the thermal energy of the surround-

ing reservoir 1
2
kBT , where kB is Boltzmann’s constant and T is the temperature of the

reservoir, and we have assumed thermal equilibrium has been reached. This relation yields

Q/4κ = kBT/2 or

(1.16) Q = κ (2kBT ) .

Notice that the strength of the fluctuations Q is directly proportional to the dissipation

κ of energy due to the frictional force.

Equation 1.16 is a simple form of the fluctuation-dissipation theorem. As the strength

of the dissipation increases, so does the strength of the fluctuations. By this theorem,

decay constants, which are typically easier to calculate, allow us to determine the strength

of corresponding fluctuations. This will be the basis of much to follow in this thesis.

1.3.2. Fluctuations in Lasers

Melvin Lax was among the first to describe this process in lasers and obtain the Langevin

theory of noise sources [70]. Equation 1.12, used to describe Brownian motion, is in

fact known as a Langevin equation. Paul Langevin, the French physicist, developed the

general form of the equation to describe stochastic processes in gases [71]. Such equations

describe the rate of change of some quantity, in the case of Eq. 1.12 particle velocity, and

include some random function which describes some stochastic process.

Each stochastic physical model has its own Langevin equation. For each source of

dissipation, there is an accompanying fluctuation. A conventional laser consists of an

electromagnetic (EM) field trapped inside a resonant cavity along with some amplifying
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Figure 1.1. Laser systems (left) and the sources of dissipation due to exter-
nal reservoirs (right). The electromagnetic field couples to both the atoms
providing optical gain and external reservoirs through leakage or absorp-
tion. The atoms also couple to external reservoirs via dephasing events,
spontaneous emission, or through the pumping mechanism.

material [14]. Figure 1.1 shows the EM field coupled to the atoms providing optical gain

for the laser. Also shown is the coupling of both the EM field and gain atoms to external

reservoirs. This coupling induces dissipation and therefore, must induce fluctuations as

well.

For an EM field inside a resonant cavity, there are two dissipation mechanisms seen in

Fig. 1.1: (i) leakage or output coupling (ii) intracavity absorption. The EM field couples

to the outside environment by exiting the resonant cavity. The cavities considered in

this thesis are open cavities because light is confined by a leaky dielectric material rather

than by perfectly reflecting boundaries. This source of loss (or dissipation) must be

accompanied by a source of fluctuation with properties determined by the decay rate out

of the cavity. The next section, Sec. 1.3.3, shall discuss this interaction of the EM field

with an external reservoir in more detail. The EM field also couples to absorbing material
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inside the resonant cavity. In this case, fluctuations accompany local dissipations inside

the cavity with the fluctuation properties determined by the local absorption coefficient.

These fluctuations have already been taken into account [72, 73], and will not be discussed

in this thesis.

The atoms inside a resonant cavity also experience dissipation. Figure 1.1 shows

three dissipation mechanisms: (i) dephasing events (ii) excited state decay (iii) pumping

(from atomic ground state to excited state). Dephasing events include lattice vibrations

or atomic collisions which cause the atomic polarization to spontaneously change phase

[74]. This source of “dissipation” of the polarization must also induce fluctuation to the

polarization. Excited state decay includes non-radiative recombination and spontaneous

emission. The spontaneous emission of photons (caused by the spontaneous decay of the

atomic excited state to the ground state) is partly due to a coupling to vacuum fields

and “radiation reaction” [75]. Modeling atoms as a dipoles, the radiation reaction is the

field generated by the dipole and acting on the dipole. These two mechanisms combine

to cause spontaneous emission of photons when the atom is in its excited state. However,

when the atom is in its ground state, these two mechanisms cancel each other, thus mak-

ing “spontaneous absorption” impossible. Therefore, only fluctuations associated with

spontaneous decay need to be included. However, atoms may be intentionally pumped

from their ground state to their excited state via an external energy source (which may

be electrical or optical in nature). This must also induce fluctuation.

Dissipation may usually be taken into account fairly easily since one only needs to

append an exponentially decaying term to the evolution equations being considered. In



35

the absence of strong light confinement, which holds for macroscopic systems, these de-

caying terms can even be considered independent of the local density of states (LDOS).

Hence, they do not have a dependence on spatial location nor frequency. The inclusion of

fluctuations, on the other hand, is more complicated. Marcuse solved the rate equations

for light intensity and electron population including noise terms [76] to illustrate the ef-

fect of noise on lasing mode dynamics [77]. Gray and Roy extended the formulation by

adding noise to the field equation in order to study the laser line shape [78]. Starting

from a microscopic Hamiltonian, Kira et al. developed a semiconductor theory including

spontaneous emission to describe semiconductor lasers [79]. While considerable progress

has been made, these models remain in the modal picture. Knowledge of mode proper-

ties is required to characterize the noise, making it difficult to study complex systems in

which the mode information is unknown a priori. Without invoking the modal picture,

Hofmann and Hess obtained the quantum Maxwell-Bloch equations including spatiotem-

poral fluctuations [80]. Although it was useful to study spatial and temporal coherence in

diode lasers, this formalism was based on the assumption that the temporal fluctuations

of carrier density and photon density were statistically independent, which often broke

down above the lasing threshold. A finite-difference time-domain (FDTD) simulation

of microcavity lasers including quantum fluctuations was also done recently [81]. This

simplified model added white Gaussian noise as a source to the electric field. The noise

amplitude depended only on the excited state’s lifetime. The dephasing process, which is

much faster than the excited state’s population decay, should induce more noise but was

neglected.
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The importance of and usefulness of noise has been recognized by many. A random

laser amplifier operates below the lasing threshold, but amplifies the total power. As shall

be shown in this thesis, noise plays a significant role in this fairly complicated and poorly

understood regime. Random laser amplifiers can be useful because they operate in the

linear regime where nonlinear interactions of light with the gain medium do not yet play

a role. Far above the lasing threshold, the random laser operates in the highly nonlinear

regime which has drastic consequences for lasing modes [45]. Beenakker studied [82]

thermal noise in a static random laser amplifier and predicted excess noise consisting of

amplified spontaneous emission due to a continuous spectrum of overlapping modes (see

Sec. 1.2.1). Fedorov and Skipetrov recently showed [83] that photon noise [84] from a

random laser amplifier carries information about dynamic properties of the medium itself.

Fluctuating properties of the medium, such as the type of particle motion and velocity

may be obtained merely by studying the fluctuations of the number of photocounts.

Furthermore, Lodahl et al. studied transport [85] of quantum noise through random

systems. They found [86] that photon noise provides information about spatial quantum

correlations of light traveling through the random medium. Cao et al. found [87] that

the photon statistics of random lasers to be helpful in distinguishing between lasing with

resonant feedback and nonresonant feedback.

The finite-difference time-domain (FDTD) method, which shall be discussed in-depth

in Sec. 1.4.1, is the direct time-domain calculation of EM fields without prior knowl-

edge of modes. One goal here is to develop FDTD-based numerical methods to simulate

fluctuations in macroscopic systems caused by interactions of atoms and photons with

reservoirs. Such noise shall be incorporated in a way compatible with the FDTD method,
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that allows one to study the light-matter interaction in complex systems without prior

knowledge of modes. The effective modal behavior is an emergent property that results

from temporal evaluation of the EM fields. These methods open a new approach for the

study of quantum mechanical aspects of radiation in macroscopic systems with classical

electrodynamics simulations. This approach has the potential to permit rigorous theo-

retical investigations of noise in the area of quantum optics and of open systems such as

chaotic open cavities. The dynamics of such systems are, in particular, very difficult to

study using standard frequency domain methods.

1.3.3. Blackbody Radiation

In the previous section, the field inside of an optical cavity was shown to interact with

an external reservoir outside the cavity. This external reservoir may be a black body,

i.e., a body that absorbs all incident radiation. This black body, however, must remain

at thermal equilibrium. Thus, it must emit radiation in addition to absorbing it. An

empty cavity that reaches thermal equilibrium then has the same intensity and frequency

distribution as the black body [88]. This noisy radiation is known as blackbody radiation.

Planck first derived the frequency distribution of blackbody radiation by considering a

large number of identical resonators with discrete energies [89]. We shall derive the form

of this frequency distribution in a similar way in Sec. 2.1.

In the modal picture, widely used in quantum optical studies, noise is introduced to

the quantum operator of a leaky cavity mode â(t). If the fluctuating force Γ̂(t) has the

same properties as the random pushes of Brownian motion in Sec. 1.3.1, then â(t) satisfies
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the reservoir-averaged commutation relation [69]

(1.17)
〈

[â(t), â†(t)]
〉

= 1.

â(t) evolves according to the Langevin equation

(1.18)
dâ(t)

dt
=

(

−iω − 1

τ

)

â(t) + Γ̂(t),

where ω is the mode frequency and τ is the mode lifetime. Without the Langevin force

Γ̂(t) (thermal fluctuations in this case), [â†(t), â(t)] = exp(−2t/τ), which tends to zero.

This means the operator â(t) eventually becomes a classical quantity and contradicts

quantum mechanics.

The amplitude of classical noise accompanying the field decay is proportional to
√
nT ,

as discussed later, where nT is the thermal photon number. At room temperature the

number of thermal photons at visible frequencies (~ω ∼ 1 eV) is on the order of 10−17.

This can be interpreted in a quantum mechanical picture as that most of the time there are

no thermal photons at visible frequencies in the system. Although thermal noise is quan-

titatively insignificant at optical frequencies, its proper treatment constitutes an essential

part of the exact quantum-mechanical theory of lasers. Early laser theory introduces the

thermal noise via a heatbath made up of loss oscillators or absorbing atoms [70, 90]. It

accounts for light absorption inside the cavity. For a laser cavity whose loss only comes

from the output coupling, the thermal noise is attributed to the thermal radiation that

penetrates the cavity through the coupling [91, 92]. Thus the amount of thermal noise

depends on the mode decay rate τ , which must be known in order to solve the Langevin

equation for the field operator (Eq. 1.18). For open complex cavities, e.g., the ones made
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of random structures, the required information of modes is unknown a priori. Thus, it is

desirable to be able to study the noise of a cavity field without prior knowledge of cavity

modes. Additional problems with the modal picture are, (i) if the cavity is very leaky, the

significant overlap of modes in frequency makes it difficult to distinguish one mode from

another; (ii) In the presence of nonlinearity, strictly speaking, the modes do not exist.

As already mentioned, by introducing noise to the electromagnetic (EM) field without

invoking the modal picture, thermal noise is added in the time domain without the knowl-

edge of cavity modes. It can be applied to simulations of complex open systems where

modes are unknown prior to the FDTD calculations. This approach is especially useful

for very leaky cavities where modes overlap strongly in frequency, as the thermal noise

related to the cavity leakage is introduced naturally without distinguishing the modes.

Therefore, this method may be applied to a whole range of quantum optics problems. Al-

though, in this thesis, the FDTD calculation of thermal noise is performed on 1D systems,

the implementation in 2D and 3D systems is straightforward. Note that this approach

does not apply to the simulation of zero-point fluctuation which have a different physical

origin than thermal noise. However, this numerical method can be used to study the

dynamics of EM fields which are excited by arbitrarily correlated noise sources. One po-

tential application is noise radar [93, 94]. The propagation, reflection and scattering of

ultra-wideband signals utilized by noise radar can be easily simulated using the method

developed here.
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1.4. Numerical Methods

In this section, the numerical methods used to carry out the study of lasing and

electromagnetic (EM) fluctuations in open complex systems are described. First, the

finite-difference time-domain (FDTD) method, which is purely a simulation of classical

EM fields, is discussed and how the method may be parallelized for faster computations.

Auxiliary differential equations used to simulate two-level atoms along with the FDTD

method are then presented. Finally, the transfer matrix method, a frequency-domain

calculation also used to simulate purely classical EM fields in one dimension, is addressed.

1.4.1. Finite-Difference Time-Domain

The finite-difference time-domain (FDTD) method is a powerful computational electro-

dynamics modeling technique. First introduced by Yee in 1966 [95] and significantly

advanced by Taflove [96], this method has been developed for decades and become more

and more popular with the increase in computer power. The basic idea of this method is

to apply the central difference approximation to Maxwell’s curl equations, both in space

and time. FDTD does not invoke the rotating-wave approximation nor the slowly varying

envelope approximation. FDTD thus enables the accurate characterization of complex

inhomogeneous structures for which analytical methods may be ill-suited.

As in Eq. 1.1, electric conductivity, magnetic loss, and magnetic current density are

not considered and thus, shall be neglected. The magnetic permeability is set to the free-

space permeability µ = µ0. Ampere’s law and Faraday’s law can be written in differential
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form

∂E

∂t
=

1

ǫ
[∇×H − J ]

∂H

∂t
= − 1

µ0

[∇×E] .(1.19)

E is the electric field, H is the magnetic field, and ǫ is the electrical permittivity. E and

H are vectors in three dimensions and consequently have three components each yielding

six coupled scalar equations to solve. The electric current density J may act as a source of

energy. To solve the above equations numerically, the spatial and temporal derivatives are

replaced by finite differences that are central-difference in nature. The three components

of E and H are staggered in space according to the “Yee lattice.” This implicitly enforces

the two remaining Maxwell equations (Gauss’ law relations). Furthermore, E and H

are also staggered in time so that the finite-difference equations may be solved by a

simple “leapfrog” method. This avoids problems involved with simultaneous equations

and matrix inversion [96]. The result is a second-order accurate algorithm (according to

the size of the discritization steps).

The FDTD algorithm may be clearly and more simply demonstrated in one dimension

(1D). Also, we only consider 1D problems in this thesis, so we only write the discretized

equations here for 1D. Assuming propagation along the x direction, the numerical spatial

grid is discretized into segments of length ∆x denoted by i and temporal steps ∆t denoted

by n. The electric field is aligned along the z direction and the magnetic field aligned

along the y direction. When discretized, the magnetic field at spatial grid location i and

time step n, for example, is expressed as Hy|ni . Discretized versions of Ampere’s law and
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Faraday’s law are then written as

Ez|n+1/2
i−1/2 =Ez|n−1/2

i−1/2 +
∆t

ǫi−1/2

[

Hy|ni −Hy|ni−1

∆x
− Jn

i−1/2

]

.

Hy|n+1
i =Hy|ni +

∆t

µ0

[

Ez|n+1/2
i+1/2 −Ez|n+1/2

i−1/2

∆x

]

.(1.20)

A time step loop is easily implemented which iteratively updates Ez|n+1/2
i−1/2 and Hy|n+1

i by

the leapfrog method. The simulation is usually begun with an excitation current density,

e.g., a Gaussian-sinusoidal source Jsource, added to Ez. The above equations are very

general and may be used with nearly any type of dielectric material. A random dielectric

structure, for example, may be simulated through an electric permittivity which has values

that vary spatially in a random way.

1.4.2. Parallelization

The FDTD algorithm may be parallelized [97] through the single-program multiple-data

technique, which is particularly well suited to solve this problem via the message passing

interface (MPI) [98]. There is only one program for all the processors, but each one

operates independently of the others. The 1D space is divided into several sub-spaces,

each sub-space being associated with one processor. All the processors execute exactly

the same FDTD program but each one operates on its own sub-space. Communication

is only required at the interfaces of the sub-spaces. For example, if the space is split

between two sub-spaces at the location between i and i+ 1/2, then to calculate Hy|n+1
i ,

the value of Ez|n+1/2
i+1/2 needs to be passed from the neighboring sub-space. Likewise, the
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value of Hy|ni would need to be passed to the neighboring sub-space in order to calculate

Ez|n+1/2
i+1/2 .

If there are M grid points and P processors, each processor works on M/P grid

points and exchanges information only with its left and right neighbor. At each step,

the amount of calculation done by each processor is proportional to M/P , while the data

each processor exchanges with its neighbor is fixed. The ratio of computation/exchange

scales as M/P . However, FDTD only requires the exchange of two variables E and H in

1D, amounting to 16 bytes for double precision variables. Transferring this small amount

of data does not require a large bandwidth of the computer network. But there is always

some delay, or latency, associated with transferring variables over a network. Latency is

usually the limiting factor for these 1D FDTD-MPI calculations.

1.4.3. Maxwell-Bloch Equations

To simulate the nonlinear process of lasing along with classical behavior of light according

to Sec. 1.4.1, we incorporate the Bloch equations for two-level atoms (TLAs) [99]. The

Bloch equations describe the time evolution of the atomic polarization and energy level

populations under the influence of applied signals. Figure 1.2 shows a simple diagram

illustrating the two-level atom model. An external pumping mechanism excites the atom

from the ground state into the excited state. The atom decays from the excited state into

the ground state, thereby emitting radiation.

For simple systems isolated from outside influencing factors (e.g., free particle, par-

ticle in a box, harmonic oscillator, hydrogen atom), a self-contained Hamiltonian and

wavefunction can describe the system as completely as quantum mechanics allows [100].
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Figure 1.2. Two-level atom diagram. An external pump excites the atom
from the ground state into the excited state. The atom decays from the
excited state into the ground state, thereby emitting radiation.

When N systems begin coupling to a heat bath or external field, however, a complete

description may not be available. This is called a “mixed state”. What may be known,

instead of every projection of the mixed state onto each eigenstate, is the probability for

a system in the ensemble to be in the m-th state um. These probabilities are given in

terms of the density matrix.

Starting off simply, we examine a wavefunction for one atom

(1.21) ψa(r, t) =
∑

m

cm(t)um(r),

with the normalization condition given as
∑

m c
∗
mcm = 1. We can now introduce the

density matrix as ρ ≡ |ψa〉 〈ψa|, which in a simple TLA yields

(1.22) ρ =







c1c
∗
1 c1c

∗
2

c2c
∗
1 c2c

∗
2







or ρjk = 〈j|ψa〉 〈ψa|k〉 = cjc
∗
k. The normalization condition now corresponds to

(1.23) Tr ρ = 1,
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which we will use later. Though we started with a wavefunction for one atom (whose

projections may or may not be completely known), we can consider the elements of the

density matrix to be an ensemble average over N atoms. Working with these probabilities,

we will never know the phase relations between |j〉 and |k〉, but we will have the benefit

of being able to describe the evolution of our system.

To find the evolution of the system in time we examine the time-dependent Schrödinger

Equation:

(1.24) i~
∂ψa

∂t
= Hψa.

The Hamiltonian is separated into two parts H = H0 + HI . H0 corresponds to the

stationary Hamiltonian of the atom when no field is present and is given by

(1.25) H0 = −1

2
~ωa







1 0

0 −1






,

where ~ = 1.05 × 10−34 m2kg/s is the reduced Planck’s constant and ωa is the atomic

transition frequency between states |1〉 and |2〉. The interaction part of the Hamiltonian

HI corresponds to the electric field Ez interacting with a dipole [101]. The dipole moment

is simply the product of the electronic charge magnitude e and the off-diagonal electron

position operator Q

HI = Ez · eQ

= eq0Ez







0 1

1 0






.(1.26)



46

Mathematically, the position operator (or equivalently, the dipole operator) is off-diagonal

because it has odd parity and the states |1〉 and |2〉 have definite parity, i.e., 〈1| ~q |1〉 =

〈2| ~q |2〉 = 0. Physically, this is so because if purely in state |1〉 or |2〉, the electron

position has a uniform probability distribution around the positively charged nucleus of

the atom meaning no dipole moment is generated. But if the electron is in a superposition

state, there is an unbalance and a dipole moment is created. Note that we assume

〈j| ~q |k〉 = 〈k| ~q |j〉 = q0 in Eq. 1.26. In other words we simply choose the phases of the

states |1〉 and |2〉 (without loss of generality [102]) so that Q12 = Q21 = q0.

The total Hamiltonian is now

(1.27) H = ~







−ωa/2 ΩR

ΩR ωa/2







where ΩR ≡ γEz/~ is the Rabi frequency and γ ≡ eq0 is the dipole coupling term. The

Schrödinger equation can be recast in terms of the density matrix elements which is then

known as the Liouville equation.

ρ̇ =
∣

∣

∣
ψ̇a

〉

〈ψa| + |ψa〉
〈

ψ̇a

∣

∣

∣

=
−i
~
H |ψa〉 〈ψa| +

i

~
|ψa〉 〈ψa|H

=
−i
~

[H, ρ](1.28)

Using Eq. 1.27 we find

(1.29) ρ̇ = −i







ΩR(ρ21 − ρ12) −ωaρ12 + ΩR(ρ22 − ρ11)

ωaρ21 − ΩR(ρ22 − ρ11) −ΩR(ρ21 − ρ12)






.
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The elements of ρ correspond to the following: (ρ11) population of the atomic ground

state, (ρ22) population of the atomic excited state, (ρ12, ρ21) complex amplitude of the

electron’s displacement [103].

We now introduce the fictitious Bloch vector ~ρ = ρ1ê1 + ρ2ê2 + ρ3ê3 via

ρ1 ≡ρ12 + ρ21

ρ2 ≡i(ρ12 − ρ21)

ρ3 ≡ρ22 − ρ11.(1.30)

ρ3 corresponds to the atomic population inversion while ρ1 and ρ2 correspond to the

atomic polarization components.

Note that due to the normalization condition discussed earlier (Eq. 1.23), ρ2
1+ρ

2
2+ρ

2
3 =

1. This is proven below. ρ2
1 + ρ2

2 + ρ2
3 can be written as

[ρ12 + ρ21]
2 + [i(ρ12 − ρ21)]

2 + [ρ22 − ρ11]
2

=(ρ2
12 + ρ2

21 + 2ρ12ρ21) + (−1)(ρ2
12 + ρ2

21 − 2ρ12ρ21) + ρ2
22 + ρ2

11 − 2ρ22ρ11

=4ρ12ρ21 + ρ2
22 + ρ2

11 − 2ρ22ρ11.(1.31)

Now, from our previous normalization condition Eq. 1.23, (ρ11 + ρ22)
2 = ρ2

22 + ρ2
11 +

2ρ22ρ11 = 1, giving ρ2
22 + ρ2

11 − 2ρ22ρ11 = 1 − 4ρ22ρ11 so that

(1.32) ρ2
1 + ρ2

2 + ρ2
3 = 1 + 4ρ12ρ21 − 4ρ22ρ11 = 1
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if ρ12ρ21 = ρ22ρ11, which is true without decoherence. In general, ρ12ρ21 ≤ ρ22ρ11 because

the positiveness of ~ρ must be preserved [104]. By introducing decoherence (as is done

below) Eq. 1.32 will not be strictly true and ρ2
1 + ρ2

2 + ρ2
3 ≤ 1. We shall use this condition

to test our numerical implementation later on.

We can now find the rate equations for the Bloch vector using Eq. 1.29 and the

definitions given above.

ρ̇12 = −i[−ωaρ12 + ΩR(ρ22 − ρ11)]

→ 1

2
ρ̇1 −

i

2
ρ̇2 =

1

2
ωaρ2 −

i

2
(−ωaρ1 + 2ΩRρ3)

ρ̇3 = ρ̇22 − ρ̇11 = −i[−2ΩR(ρ12 − ρ21)] = −2ΩRρ2(1.33)

Putting this in matrix form gives

(1.34)













ρ̇1

ρ̇2

ρ̇3













=













0 ωa 0

−ωa 0 2ΩR

0 −2ΩR 0

























ρ1

ρ2

ρ3













.

We then add phenomenological decay rates due to decoherence and the excited state’s

lifetime (which includes spontaneous emission and non-radiative recombination). In the

absence of strong light confinement, which holds for macroscopic systems, T1 and T2 can

be considered independent of the local density of states (LDOS). Hence, they do not have

a dependence on spatial location nor frequency. We also include incoherent pumping of

atoms from level 1 to level 2. The rate is proportional to the population in level 1, and
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can be written as (Pr/T1)ρ11. The final equations read as













ρ̇1

ρ̇2

ρ̇3













=













0 ωa 0

−ωa 0 2ΩR

0 −2ΩR 0

























ρ1

ρ2

ρ3













−













1/T2 0 0

0 1/T2 0

0 0 1/T1(1 + Pr)

























ρ1

ρ2

ρ3 − ρ
(s)
3













,(1.35)

where ρ
(s)
3 represents the steady-state value of ρ3 when Ez = 0. The polarization is found

through the expectation value of the dipole moment operator as p = −eTr(ρQ) = −|γ|ρ1.

The total polarization Pz of N atoms in a volume V is Pz = (N/V )p = −(N/V )|γ|ρ1 and

enters into Maxwell’s equations as

∂Ez

∂t
=

1

ǫ

∂Hy

∂x
− 1

ǫ

∂Pz

∂t

∂Hy

∂t
= − 1

µ0

∂Ez

∂x
.(1.36)

Equations 1.35 and 1.36 comprise the Maxwell-Bloch equations and are commonly

used to simulate lasers. The most commonly used method of solving the Maxwell-Bloch

equations is the “strongly coupled method.” With ∆t being the time step, Ez and ρ are

both computed at n∆t, (n+1)∆t, etc., while Hy is computed at (n−1/2)∆t, (n+1/2)∆t,

etc. This produces equations with coupled terms such as En+1
z ρn+1 that must be solved

by a predictor-corrector scheme (as used in [99]) or a fixed-point procedure, both of which
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are computationally inefficient. Therefore, we use a weakly coupled method that is easily

implemented and efficient for 1D systems.

The weakly coupled method was put forth by Bidégaray [105]. The electric field Ez is

computed at times n∆t, (n+1)∆t, but ρ is calculated at (n−1/2)∆t, (n+1/2)∆t, thereby

decoupling those discretized equations and creating a simple leap-frog type propagation

system for 1D. This is similar to the FDTD method itself (Sec. 1.4.1).

The total number of atoms N are split equally among each grid cell to give Ns = N/M ,

where M is the number of grid cells. Thus, all quantities are defined at each individual

grid point. Furthermore, we use ρ22 instead of ρ3 which allows us to forcibly keep the

number of atoms constant via the relation ρ11 = Ns − ρ22. The Maxwell-Bloch equations

shall be discretized later in this thesis (Sec. 3.1), when fluctuations are introduced.

As a mathematical aside, some find it useful to analytically precondition the equations

as

ρ1 ≡u1e
−t/T2

ρ2 ≡u2e
−t/T2

ρ22 ≡u22e
−t/T1(1.37)

and solve ui instead of ρi. This works well with higher accuracy for larger grid cells

because numerical stiffness [106] from time stepping the exponential terms disappears.

This preconditioning, however, is not employed in this thesis because it results in terms

containing exp(t/T2) which diverge numerically when t ≥ 710T2 for double precision
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calculations. This divergence is not a problem for short time scales, but the simulations

we have in mind are orders of magnitude longer.

1.4.4. Transfer Matrix

In an altogether different method, the propagation of electromagnetic fields through 1D

layers in the frequency domain may be described by the transfer matrix method. A field

E0 transmitted through an interface with transmissivity t is given by E = tE0. Now,

an incoming wave p0 is both transmitted and reflected from an interface. We denote

the reflected wave by q0 and after reaching the other side of the material (whatever the

structure of that material may be) we again have a transmitted wave pN and reflected

wave qN . This can be represented in matrix form by







pN

qN






= M







p0

q0






.

Now we are free to impose whatever boundary conditions we like. The conditions for

an incoming signal only are q0 = pN = 0 giving

0 = M11p0

qN = M21p0.(1.38)

As part of the input vector, qN may be chosen as zero. Thus, solutions satisfying M11 = 0

also satisfy the incoming-only boundary conditions (or perfect absorption). For outgoing-

only signals (or perfect amplification–lasing), the boundary conditions are p0 = qN = 0

and the condition M22 = 0 defines the solutions.
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The following formalism is provided by Born and Wolf [107]. Using their Fresnel

formulae, we apply this transfer matrix to a dielectric slab of length L and index of

refraction n. Considering the TE polarization, the reflection and transmission coefficients

from layer 0 (air) to layer 1 (dielectric) are

(1.39) ra =
1 − n

1 + n
; ta =

2

1 + n

and from layer 1 to layer 2 (air) are

(1.40) rb =
n− 1

n+ 1
; tb =

2n

n + 1
.

The first step toward finding the complete transfer matrix is to reproduce the coefficients

given by Eq. 1.39, which can cast in matrix form as

(1.41)







ta

0






= c0







1

ra







The solution is the following matrix

(1.42) c0 =







1
tb

= n+1
2n

rb

tb
= n−1

n+1
n+1
2n

rb

tb
= n−1

n+1
n+1
2n

1
tb

= n+1
2n






=

1

2n







n+ 1 n− 1

n− 1 n+ 1






.

In the next step, we allow the fields to travel through the layer, yielding the next part of

the transfer matrix

(1.43) b1 =







eik̃mnL 0

0 e−ik̃mnL






,
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where k̃m is the complex wavevector of mode number m. The final step in finding the

complete transfer matrix for this dielectric slab is to satisfy Eq. 1.40 with the matrix c1,

found in the same way as c0. Thus, the entire transfer matrix is given by

(1.44) M = c1b1c0 =
1

tatb







eik̃mnL + rarbe
−ik̃mnL rae

−ik̃mnL + rbe
ik̃mnL

rbe
−ik̃mnL + rae

ik̃mnL rarbe
ik̃mnL + e−ik̃mnL






.

To verify this, examine the total transmission given by

T =
M11M22 −M12M21

M22

=
eik̃mnL

tatb

[

(r2
b − 1)(r2

a − 1)

1 + rarbe2ik̃mnL

]

.(1.45)

The same expression can be found analytically [108] from

(1.46) T =
E+(x = L+)

E+(x = 0−)
.

The field is transmitted through the first interface and reaches the second interface as

(1.47) E1(x = L−) = taE+(x = 0−)eik̃mnL.
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It then partially reflects off the second interface (dielectric to air) and again off the first

interface (dielectric to air also) and back giving E2, then again giving E3 and so forth.

E2(x = L−) = E1

(

r2
be

2ik̃mnL
)

E3(x = L−) = E2

(

r2
be

2ik̃mnL
)

= E1

(

r2
be

2ik̃mnL
)2

E+(x = L−) = E1 + E2 + E3 + . . .

= E1(1 + η + η2 + . . . ) =
E1

1 − η

T =
tbE+(x = L−)

E+(x = 0−)
=

tatbe
ik̃mnL

1 − r2
be

2ik̃mnL
,(1.48)

where η ≡ r2
be

2ik̃mnL. From Eqs. 1.39 and 1.40, t = 1 + r and as a consequence t2at
2
b =

(1 + ra)
2(1 + rb)

2 which is equivalent to (r2
a − 1)(r2

b − 1) since ra = −rb. Thus, Eq. 1.48 is

equivalent to Eq. 1.45.

1.4.4.1. Solving For Boundary Conditions. For the incoming-only boundary condi-

tions, we set M11 = 0 and solve for k̃m = km + i(ki)m. Note that km = 2π/λm is the free

space wavenumber of mode m.

M11 =
1

tatb

[

eikmnL−(ki)mnL + rarbe
−ikmnL+(ki)mnL

]

= 0

ReM11 = cos(kmnl)
(

e−(ki)mnL + rarbe
(ki)mnL

)

= 0

ImM11 = sin(kmnL)
(

e−(ki)mnL − rarbe
(ki)mnL

)

= 0(1.49)
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There are two sets of solutions here

A) sin(kmnL) = 0

e−(ki)mnL + rarbe
(ki)mnL = 0

B) cos(kmnL) = 0

e−(ki)mnL − rarbe
(ki)mnL = 0(1.50)

For Case A

km =
π

nL
m

(ki)m = ki = − ln(−rarb)

2nL
(1.51)

However, for Case B

km =
π

nL
(m+ 1/2)

(ki)m = ki = − ln(rarb)

2nL
,(1.52)

which should not exist as a solution since rarb < 0 making ki complex.

For the case of outgoing-only boundary conditions, a similar Case A yields

km =
π

nL
m

(ki)m = ki =
ln(−rarb)

2nL
.(1.53)
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For this simple case we already know what the result should be. Transmission reaches a

maximum when

(1.54) 2nL = mλ

yielding in our specific situation

(1.55) km =
π

nL
m;m = ±1,±2, . . .

which is exactly the same solution as case A.

The field distribution for these boundary conditions inside the cavity can be calculated

using b1(x)c0. The field at any point for incoming-only boundary conditions is

(1.56) Em(x) =
rb

tb
e−ik̃mnx +

1

tb
eik̃mnx

and for outgoing boundary conditions is

(1.57) Em(x) =
rb

tb
eik̃mnx +

1

tb
e−ik̃mnx.

The real and imaginary parts for the incoming-only boundary conditions are

Re[Em(x)] =

(

n+ 1

2n
e−kinx +

n− 1

2n
ekinx

)

cos(kmnx)

Im[Em(x)] =

(

n+ 1

2n
e−kinx − n− 1

2n
ekinx

)

sin(kmnx)(1.58)
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and for outgoing-only boundary conditions are

Re[Em(x)] =

(

n− 1

2n
e−kinx +

n + 1

2n
ekinx

)

cos(kmnx)

Im[Em(x)] =

(

n− 1

2n
e−kinx − n+ 1

2n
ekinx

)

sin(kmnx).(1.59)

Note that ki differs in sign for these two boundary conditions [compare Eqs. 1.51 and

1.53], making the real parts in both cases equal and the imaginary parts conjugates. Thus,

the field distribution for outgoing-only boundary conditions is the complex conjugate

of the field distribution for incoming-only boundary conditions. The biorthogonal left

eigenvector is known to be the complex conjugate of the right eigenvector. Since the

solutions satisfying these opposing boundary conditions should be biorthogonal, we find

proof that they are in the fact that they are complex conjugates.

1.4.4.2. Linear Gain Model. Here, we describe the model used to simulate linear

gain in a 1D system. The gain is linear in the sense that it does not depend on the

electromagnetic field intensity. A lasing solution Ψ(x) must satisfy the time-independent

wave equation [see Eq. 1.2]

(1.60)

[

d2

dx2
+ ǫ(x, ω)k2

]

Ψ(x) = 0,

with a complex frequency-dependent dielectric function

(1.61) ǫ(x, ω) = ǫr(x) + χg(x, ω),
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where ǫr(x) = n2(x) is the dielectric function of the non-resonant background material.

The frequency dependence of ǫr(x) is negligible. χg(x, ω), corresponding to the suscepti-

bility of the resonant material, is given by

(1.62) χg(x, ω) =
AeN(x)

ω2
a − ω2 − iω∆ωa

,

where Ae is a material-dependent constant, N(x) is the spatially dependent density of

atoms, ωa is the atomic transition frequency, and ∆ωa is the spectral linewidth of the

atomic resonance. Equation (1.62) may be simplified by assuming the frequencies of

interest ω are within a few linewidths of the atomic frequency ωa, i.e., ω2 − ω2
a = (ω +

ωa)(ω − ωa) ≈ 2ωa(ω − ωa). Equation (1.62) then reduces to

(1.63) χg(x, ω) ≈ iAeN(x)

ωa∆ωa[1 + 2i(ω − ωa)/∆ωa]
.

The frequency-dependent index of refraction is

ñ(x, ω) =
√

ǫ(x, ω) =
√

ǫr(x) + χg(x, ω)

=nr(x, ω) + ini(x, ω),(1.64)

which may then be implemented in the transfer matrix method. At this point, let us

note that only 2 steps are needed to convert this classical electron oscillator model to

real atomic transitions [14]. First, the radiative decay rate γ‖ may be substituted in to

Eq. (1.63) in place of a few constants. Second, and more importantly, real quantum

transitions induce a response proportional to the population difference density ∆N(x).
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Thus, N(x) should be replaced by ∆N(x), the difference in population between the lower

and upper energy levels. ∆N(x) is equivalent to −ρ3(x) in Sec. 1.4.3.

Linear gain independent of ω is obtained by working in the limit ω − ωa ≪ ∆ωa,

yielding

(1.65) χg(x) ≈ i
Ae∆N(x)

ωa∆ωa

,

a purely imaginary susceptibility. We can make the definition χg(x) ≡ iǫi(x), where ǫi(x)

is the imaginary part of ǫ(x). Note that ǫ(x) may include absorption [ǫi > 0] or gain

[ǫi < 0]. We shall only consider gain here. The complex frequency-independent dielectric

function now yields a frequency-independent index of refraction ñ(x) = nr(x) + ini(x)

which may be expressed explicitly as

nr(x) =
n(x)√

2

[
√

1 +
ǫ2i (x)

n4(x)
+ 1

]1/2

ni(x) =
−n(x)√

2

[
√

1 +
ǫ2i (x)

n4(x)
− 1

]1/2

.(1.66)

Furthermore, throughout this thesis, we assume ni to be a spatially independent param-

eter. Thus, by solving for nr(x) in terms of n(x) and ni, the index of refraction we use in

the transfer matrix method is given by

ñ(x) =nr(x) + ini

=
√

n2(x) + n2
i + ini.(1.67)
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1.5. Overview of this Thesis

This thesis is organized as follows. Chapter 2 discusses the simulation of thermal

electromagnetic field fluctuations. Section 2.1 outlines the numerical model used in the

simulation and discusses possible numerical difficulties and problems. Section 2.2 presents

the results of including blackbody radiation in vacuum. Section 2.3 presents results of

noise penetrating a 1D cavity. The transition from the Markovian regime to the non-

Markovian regime is studied. Section 2.4 consists of a discussion and interpretation of the

results. An analytical expression is found which offers further insights to the amount of

noise inside an open cavity.

Chapter 3 discusses the simulation of atomic fluctuations. Section 3.1 describes the

numerical model developed to include noise in the Maxwell-Bloch equations. In Section

3.2, atomic superfluorescence is simulated and the results are compared to experimental

data and quantum-mechanical calculations. Section 3.3 discusses lasing behavior in a

dielectric slab laser under the influence of atomic fluctuations.

Chapter 4 discusses the effects of noise on random lasers. Section 4.1 describes the

generation of random structures, the characteristics of the particular structures studied,

and numerical issues associated with the simulation of noise in random structures. In

Section 4.2, an analysis using linear gain provides a solid basis of understanding. These

results are compared to those using the Maxwell-Bloch equations both with and without

noise in Sec. 4.3. Section 4.4 presents a summary of all results in this chapter.

Chapter 5 concentrates on the effects of spatially nonuniform gain in random lasers. In

Section 5.1, additional numerical methods used to study the lasing modes of 1D random

dielectric structures are described. A scheme for decomposing the lasing modes in terms
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of quasi modes is presented. A method to separate traveling wave and standing wave

components from the total electric field is introduced. Results of simulations of passive

random systems and random lasers with uniform gain are discussed in Section 5.2. Modal

behavior with reduction of the spatial gain region is studied in Section 5.3. Mode mixing

results are presented in Section 5.4 and the disappearance and appearance of lasing modes

is discussed in Section 5.5.

Conclusions based on the data in this thesis are made in Chapter 6.
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CHAPTER 2

Thermal Electromagnetic Field Fluctuations

The finite-difference time-domain (FDTD) method [96] has been extensively used

in solving Maxwell’s equations for dynamic electromagnetic (EM) fields. The absorb-

ing boundary condition based on the perfectly matched layer (PML) [109] allows the

simulation of open systems, e.g. leaky optical cavities, in any dimension. The incorpora-

tion of auxiliary differential equations, such as the rate equations for atomic populations

[110, 111], the Maxwell-Bloch equations for the density of states of atoms [99, 112, 113],

and the multi-subband semiconductor Bloch equations [114, 115], has led to comprehen-

sive studies of light-matter interactions. Although the FDTD method has become a

powerful tool in computational electrodynamics, it is applied mostly to classical or semi-

classical problems. The light field in an open cavity experiences quantum fluctuation

because of its coupling to external reservoirs. In this chapter, we model the quantum

noise for the cavity field as a classical noise and incorporate it into the FDTD algorithm.

The output coupling is not a local loss and thus, fluctuations cannot be added to

the local EM field (i.e., at each grid point). The question is how to introduce thermal

noise related to cavity leakage without knowing the leakage rate. In FDTD simulations,

light escaping from an open system is absorbed by the absorbing boundary layer (ABL)

which acts as the external reservoir. Since it absorbs all impinging fields, the ABL can

be modeled as a black body (see Sec. 1.3.3). To remain in thermal equilibrium, the black

body must radiate into the system. The blackbody radiation from the ABL propagates
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into the cavity and acts as noise to the cavity field. The amount of noise penetrating the

cavity depends on the cavity openness or output coupling. Our model is validated through

the calculation of field noise in a one-dimensional (1D) dielectric cavity. In a good cavity

where the mode lifetime τ is much longer than the coherence time of thermal radiation

τc, we find that the average amount of thermal noise in one cavity mode agrees with the

solution of the Langevin equation under the Markovian approximation. In addition to

recovering the standard results, our simulations with various values of τ and τc illustrate

the transition from the Markovian regime to the non-Markovian regime, and demonstrate

that the buildup of the intracavity noise field depends on the ratio of τc to τ . This result

is explained qualitatively by the interference effect.

2.1. Noise Model

Our numerical model is based on the key insight that the ABL normally used to

bound FDTD computational grids is in effect a black body which ideally absorbs all

incident radiation. To stay in thermal equilibrium with temperature T , the black body

must radiate into the system. To simulate the blackbody radiation, we surround the grid

with a series of noise sources next to the grid/ABL interface. These soft sources radiate

EM waves into the grid having spectral properties consistent with blackbody radiation.

The 1D grid is discretized with a spatial step ∆x and time step ∆t. As shown in the

inset of Fig. 2.1, two point sources are placed at the extremities of the grid. Each source

generates an electric field Es at every time step tj . Examples of the noise source of

electric field Es(tj) are shown in Fig. 2.1. A Fourier transform of the temporal correlation

function of the electric field, 〈Es(t1)Es(t2)〉, gives the noise spectrum D(ω, T ). If Es(tj) is
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Figure 2.1. Thermal noise source electric field Es(tj) generated for T =
30, 000 K (red crosses) and T = 50, 000 K (black dots). The noise correla-
tion time τc ≈ 0.337 fs for T = 30, 000 K and τc ≈ 0.203 fs for T = 50, 000
K. ∆x = 1 nm, M = 221 and τsim = 7 ps. The inset is a schematic showing
the noise sources placed next to the grid/ABL interface [116].

uncorrelated in time, i.e., 〈Es(t1)Es(t2)〉 ∝ δ(t2−t1), D(ω, T ) is the white-noise spectrum.

This is incorrect as D(ω, T ) should be equal to the energy density per unit frequency of

blackbody radiation [14].

To find the energy density of blackbody radiation in 1D, we need to find the grand

potential Λ of a Bose-Einstein ideal gas with an affinity of zero (due to the fact that

photons are not a conserved particle species) [88]. Consider photons of frequency ω in a

1D space of length L. The density of states in 1D is (L/πc)dω [117], where c is the speed

of light in vacuum. The grand potential is expressed as

(2.1) Λ = − L

πc

∫

log[1 − exp(−β~ω)]dω,
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Figure 2.2. FDTD-calculated energy density of blackbody radiation prop-
agating in 1D vacuum versus frequency ω for temperatures T = 30, 000 K
(lower) and T = 50, 000 K (upper). The inset shows the energy density for
temperature T = 30, 000 K at higher frequencies. The data are obtained
by averaging over 2000 calculations with the resolutions ∆x = 10 nm (red
crosses) and ∆x = 1 nm (black dots). The source spectra D(ω, T ) are also
plotted as solid lines on top of the numerical spectra.

where β = 1/kBT . The radiation energy can be found as Ue = −∂Λ/∂β giving the energy

density of radiation

Ue

L
=

~

πc

∫

ω exp(−β~ω)

1 − exp(−β~ω)
dω

=
~

πc

∫

ω

exp(β~ω) − 1
dω.(2.2)

Thus, the energy density of radiation per unit frequency is

(2.3) D(ω, T ) =
~

πc

[

ω

exp(~ω/kBT ) − 1

]

.

D(ω, T ) for two different temperatures is plotted in Fig. 2.2. For computational conve-

nience, we extend the range of ω from (0,∞) to (−∞,∞). Since the electric field in
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the FDTD simulation is a real number, D(−ω, T ) must be equal to D(ω, T ) for ω > 0.

Therefore, D(ω, T ) = D(|ω|, T ). We normalize D(ω, T ) as

(2.4) Dn(|ω|, T ) =
6~

2

πk2
BT

2

( |ω|
exp(~|ω|/kBT ) − 1

)

so that
∫ ∞

−∞
Dn(|ω|, T )dω = 2π.

The temporal correlation function for the source electric field is given by

(2.5) 〈Es(t1)Es(t2)〉 =
δ2

2π

∫ ∞

−∞

dωDn(|ω|, T )eiω(t2−t1),

where δ is the rms amplitude of the noise field whose value is to be determined later. For

the thermal noise, the field correlation function is given specifically by

(2.6) 〈Es(t1)Es(t2)〉 =
3δ2

π2
[ζ(2, 1− i(t2 − t1)kBT/~) + ζ(2, 1 + i(t2 − t1)kBT/~)] ,

where the ζ-function is given as

(2.7) ζ(s, a) =
∞

∑

j=0

(j + a)−s.

The temporal correlation function of thermal radiation is plotted in Fig. 2.3.

We employ a quick and straightforward way of generating random numbers for Es(tj)

so that Eq. 2.5 is satisfied. Freilikher et al. have developed such a method in the context

of creating random surfaces with specific height correlations [118]. The end result takes

advantage of the fast Fourier transform (FFT) which we use to generate the source electric
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Figure 2.3. Temporal correlation function, 〈Es(t1)Es(t2)〉 vs. t2 − t1, for
the noise electric field at T = 30, 000 K (black circles) and T = 50, 000 K
(red crosses). The noise correlation times are τc ≈ 0.337 fs for T = 30, 000
K and τc ≈ 0.203 fs for T = 50, 000 K. ∆x = 1 nm, M = 221, and τsim = 7
ps. The lines represent 〈Es(t1)Es(t2)〉 given by the analytical expression
in Eq. 2.6 for T = 30, 000 K (black) and T = 50, 000 K (red). Every 5th
data point is taken from the numerical data in order to better show the
agreement with the analytical solution.

field:

(2.8) Es(tj) =
δ√
τsim

M−1
∑

l=−M

(Ml + iNl)D
1/2
n (|ωl|, T )eiωltj ,

where 2M is the total number of time steps, τsim = 2M∆t is the total simulation time

and ωl = 2πl/τsim. Ml and Nl are independent Gaussian random numbers with zero mean

and a variance of one. Their symmetry properties are Ml = M−l and Nl = −N−l. These

Gaussian random numbers can be generated by the Marsaglia and Bray modification

of the Box-Müller Transformation [119], a very fast and reliable method assuming the

uniformly distributed random number generator is quick and robust.

The electric field sources generate both electric and magnetic fields, which propagate

into the grid. Ez(x, ω) and Hy(x, ω) are obtained by the discrete Fourier transform (DFT)
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of Ez(x, t) and Hy(x, t). Since both Ez(x, t) and Hy(x, t) are real numbers, Ez(x, ω) =

Ez(x,−ω) andHy(x, ω) = Hy(x,−ω). The EM energy density at frequency ω shall include

Ez(x, ω), Ez(x,−ω), Hy(x, ω) and Hy(x,−ω). If the grid is vacuum, the steady-state

energy density at every position x should be equal to the blackbody radiation density.

The rms amplitude δ of the source field Es is determined by

(2.9)
1

2
ǫ0|Ez(x, |ω|)|2 +

1

2
µ0|Hy(x, |ω|)|2 =

~

πc

|ω|
e~|ω|/kBT − 1

.

When setting the parameters in the FDTD simulation, we must taken into consid-

eration the characteristics of thermal noise. The temporal correlation time or coherence

time τc of thermal noise is defined as the full width at half maximum (FWHM) of the

temporal field correlation function. If the time step ∆t is close to τc, Es exhibits a sud-

den jump at each time step. The 1D FDTD algorithm cannot accurately propagate such

step-like pulses (with sharp rising edge) if the Courant factor S ≡ c∆t/∆x is set at a

typical value S < 1. The pulse shape is distorted with fringes corresponding to both

retarded propagation and superluminal response [96]. This occurs because the higher

frequencies from the step discontinuity are being inadequately sampled and because of

numerical dispersion arising from the method of obtaining the spatial derivatives for E

and H . To avoid such problems, we use S = 1 which eliminates the numerical dispersion

artifact [96]. Furthermore, we set ∆t ≪ τc which provides a dense temporal sampling

relative to the correlation/coherence time of the thermal noise.

To obtain an accurate noise spectrum with the DFT, both the frequency and temporal

resolutions must be chosen carefully. The two problems affecting the reliability of the DFT

are aliasing and leakage due to the use of a finite simulation time [106]. The solution to
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these problems is to increase the number of time steps 2M and decrease the time step

value ∆t. This takes the DFT closer to a perfect analytical Fourier transform, but run-

time and memory limitations must be considered as well. Taking advantage of the FFT

algorithm significantly reduces both noise generation time and spectral analysis time.

Although the thermal noise spectrum can be very broad, only noise within a certain

frequency range is relevant to a specific problem. Let ωmin and ωmax denote the lower and

upper limits of the frequency range of interest, and ∆ω the frequency resolution needed

within this range. To guarantee the accuracy of the noise simulation in ωmin < ω < ωmax,

the total running time τsim must exceed 2π/ωmin and 2π/∆ω. The time step ∆t has an

additional requirement, ∆t < π/ωmax.

2.2. Thermal Noise in Vacuum

We first test the noise sources in a 1D FDTD system composed entirely of vacuum.

Two sets of independent noise signals Es(tj) are generated via Eq. 2.8. One set is added

as a soft source one grid cell away from the left absorbing boundary; the other one cell

from the right absorbing boundary. Both have equal rms amplitude δ so that the average

EM flux to the left equals that to the right at any position x in the grid. Since the

system is one dimensional, the EM flux at any distance away from the source has the

same magnitude. The value of δ shall be adjusted so that Eq. 2.9 is satisfied. For the EM

energy density radiated by one source to equal D(|ω|, T ), we set δ to

(2.10) δ =

√

2

ǫ0

1

6~c
kBT.
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After the noise fields in the grid reach steady state, the noise spectrum at any grid point

is obtained by a DFT. We verify that the spectrum of EM energy density at any point

in the grid is identical to that at the source. This means there is no distortion of the

noise spectrum by the propagation of noise fields in vacuum. The two point sources at

the grid/ABL interface radiate into both the grid and ABL. Since the two sources are

uncorrelated with each other, their energy densities, instead of their field amplitudes, add

in the grid. Thus no further modification of δ from that given by Eq. 2.10 is needed to

satisfy Eq. 2.9. It is numerically confirmed that δ does not depend on the total length of

the system.

Examples of the noise source of electric field Es(tj) at T = 30, 000 K and T = 50, 000

K are shown in Fig. 2.1. ∆x = 1 nm, and ∆t ≪ τc. The frequency range of interest is set

as ωmin = 2× 1015 Hz, ωmax = 2.5× 1016 Hz, and the frequency resolution ∆ω = 1× 1012

Hz. From the condition ∆t < π/ωmax, ∆x shall be less than 37 nm. Figure 2.2 compares

the FDTD calculated energy density to that of thermal radiation density D(ω, T ). Using

∆x = 10 nm creates a slight discrepancy at high frequencies; e. g. at ω ≤ 1×1016 Hz the

mean error & 2.5%. To reduce the error to below 2.5% at ωmax = 2.5× 1016 Hz, we refine

the resolution. Using ∆x = 4 nm changes the error at ωmax to 1.6%. If the total time

step 2M = 221 is fixed, the decrease of ∆t leads to a reduction of τsim = 2M∆t, which

increases 2π/τsim to 2× 1011 Hz. We must check that 2π/τsim < ωmin and 2π/τsim < ∆ω

are still satisfied. With ∆x = 1 nm, the error at 2.5 × 1016 Hz is further reduced to

< 0.1%. 2π/τsim increases to 9 × 1011 Hz, which is still below the set values of ωmin and

∆ω. Therefore, using the value of δ in Eq. 2.10 and carefully choosing the numerical
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resolutions yield the blackbody spectrum at every point in the grid within the frequency

range of interest.

Figure 2.3 compares the FDTD calculated temporal correlation function of the electric

field to that of Eq. 2.6 at T = 30, 000 K and 50, 000 K. With increasing temperature, the

coherence time τc reduces quickly. The quantitative dependence of τc on T is found to be

τc ≈ 1.32~/kBT . This 1/T dependence does not change for a dimensionality higher than

one; only the prefactor changes [120]. As the correlation time τc decreases, the time step

∆t shall be reduced to maintain the temporal resolution of the correlation function. The

subsequent reduction of total running time τsim = 2M∆t does not affect the numerical

accuracy, as long as the total number of time steps 2M is fixed. A decrease of 2M would

result in an increased mean-square error in the correlation function due to less sampling.

As shown in Fig. 2.3, the good agreement of the FDTD calculated temporal correlation

function to that of blackbody radiation given by Eq. 2.3 confirms that introducing noise

sources with the characteristics of blackbody radiation at the FDTD absorbing boundary

effectively simulates thermal noise in vacuum.

2.3. Thermal Noise in an Open Cavity

Next we calculate the thermal noise in a dielectric slab of length L and refractive index

n > 1. This slab constitutes an open cavity in that the electromagnetic field leaks from

both surfaces of the slab into the exterior region. A schematic of the 1D open cavity is

shown in the inset of Fig. 2.4(b). The cavity mode frequency is ωm = mπc/nL, where

m is an integer. The frequency spacing of adjacent modes is dω = ωm − ωm−1 = πc/nL,

which is independent of m. Ignoring intracavity absorption, the decay of cavity photons
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is caused only by their escape from the cavity. All the cavity modes have the same decay

time τ = 1/kic, where from Eq. 1.53 ki = − ln (r2) /2nL, and r = (1 − n)/(1 + n) is

the reflection coefficient at the boundary of the dielectric slab. The mode linewidth is

δω = 2/τ . We simulate only good cavities whose modes are well separated in frequency,

namely, δω < dω. Since δω ∝ 1/L, the ratio δω/dω is independent of L, and is only a

function of n.

The Langevin equation for the annihilation operator âm(t) of photons in the m-th

cavity mode (see Eq. 1.18) is

(2.11)
dâm(t)

dt
=

(

−iωm − 1

τ

)

âm(t) + Γ̂m(t),

where Γ̂m(t) is the Langevin force. If the noise correlation time τc ≪ τ , Γ̂m(t) can be

considered δ-correlated in time. The Markovian approximation gives
〈

Γ̂†
m(t)Γ̂m(t′)

〉

=

DF δ(t− t′). According to the fluctuation-dissipation theorem, DF = (1/τ)nT (ωm), where

(2.12) nT (ωm) =
1

exp(~ωm/kBT ) − 1

is the number of thermal photons in a vacuum mode of frequency ωm at temperature T

[90].

From Eq. 2.11, the average photon number in one cavity mode 〈n̂m(t)〉 ≡
〈

â†m(t)âm(t)
〉

satisfies

(2.13)
d

dt
〈n̂m(t)〉 = −2

τ
〈n̂m(t)〉 +

2

τ
nT (ωm).
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At steady state, 〈n̂m〉 = nT (ωm) in each cavity mode. The number of thermal photons is

determined by the Bose-Einstein distribution nT (ωm). 〈n̂m〉 is independent of the cavity

mode decay rate because the amount of thermal fluctuation entering the cavity increases

by the same amount as the intracavity energy decay rate.

2.3.1. Markovian Regime

In our FDTD simulations, we verify that when τ ≫ τc the number of thermal photons in

one cavity mode is equal to nT (ωm). Since there is neither a driving field (e.g., a pumping

field) nor excited atoms in the cavity, the EM energy stored in one cavity mode comes

entirely from the thermal radiation of the ABL which is coupled into that particular mode.

The steady-state number of photons in the m-th cavity mode is obtained from the FDTD

calculation of intracavity EM energy within the frequency range ωm−1/2 < ω < ωm+1/2,

where ωm±1/2 = (m± 1/2)πc/nL.

(2.14) nm ≡ 〈n̂m〉 =
1

~ωm

∫ ωm+1/2

ωm−1/2

dω

∫ L

0

dx

(

1

2
ǫ|Ez(x, ω)|2 +

1

2
µ0|Hy(x, ω)|2

)

In our simulation, the temperature of the thermal sources at the ABL is T = 30, 000 K.

The coherence time of thermal radiation is τc = 0.337 fs. The refractive index of the

dielectric slab is n = 6, and the length is L = 2400 nm. The cavity lifetime τ = 143 fs, is

much longer than τc. The reason to choose a relatively large value of n is to have δω < dω

so that the cavity modes are separated in frequency. Care must be taken in setting the

grid resolution because the intracavity wavelength is reduced to λ/n. To maintain the

spatial resolution, ∆x is decreased to meet ∆x≪ λ/n. In our FDTD simulation, ∆x = 1

nm and 2M = 221. After the intracavity EM field reaches the steady state, we calculate
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the average thermal energy density inside the cavity

(2.15) U(ω) =
1

L

∫ L

0

dx

(

1

2
ǫ|Ez(x, ω)|2 +

1

2
µ0|Hy(x, ω)|2

)

.

Figure 2.4(a) shows the intracavity noise spectrum U(ω), which features peaks at the

cavity resonant frequencies ωm. Because n > 1, EM energy is also stored in the dielectric

slab at frequencies away from cavity resonances. For example, U(ω = ωm±1/2) is higher

than that in vacuum by a factor of 2n2/(n2 + 1). Thus the entire noise spectrum lies on

top of the vacuum blackbody radiation spectrum, as confirmed in Fig. 2.4. The number of

thermal photons in a cavity mode is calculated via Eq. 2.14 and plotted in Fig. 2.5. The

modal photon number nm is equal to nT (ωm) with a mean error less than 0.1%. This result

agrees with the steady-state solution of Eq. 2.14. It confirms that our numerical model of

thermal noise in an open cavity is consistent with the prediction of quantum mechanical

theory. Note that the modal photon numbers in Fig. 2.5 are time averaged values. Their

values being much less than unity can be interpreted in a quantum mechanical picture as

that most of the time there is no photon in the cavity mode.

2.3.2. Non-Markovian Regime

The above calculation is done in the Markovian regime. Next we move to the non-

Markovian regime by reducing τ . The refractive index is kept at n = 6, while the cavity

length L is reduced. This is a simple way of increasing the mode linewidth δω while

keeping the modes separated in frequency, i.e., keeping δω/dω constant. If τ is decreased

to less than τc, ∆t shall be reduced to keep ∆t≪ τ . Meanwhile, the increase of the mode

linewidth and mode spacing allows low frequency resolution, namely, an increase of ∆ω.
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Figure 2.4. Spatially-averaged EM energy density U(ω), calculated by the
FDTD method, versus frequency ω in a dielectric slab cavity with refractive
index n = 6 and length L = 2400 nm (a) and L = 20 nm (b). The vertical
black dashed lines mark the frequencies of cavity modes ωm. The spectrum
of impinging blackbody radiation D(ω, T ) is also plotted (red solid line). In
(a) the cavity decay time τ = 143 ps, much longer than τc. In (b), τ = 1.19
fs, comparable to τc.

For example, at L = 20 nm, we set ∆x = 0.1 nm, ∆ω = 9 × 1012 Hz and 2M = 221.

Figure 2.4(b) shows the intracavity noise spectrum U(ω) in this regime, which also features

peaks at the cavity resonant frequency ωm. Figure 2.5 shows the FDTD-calculated value

of nm as L decreases gradually from 2400 nm to 20 nm. When τ approaches τc, nm is no

longer independent of τ , but starts increasing from nT (ωm). This means the number of

thermal photons that are captured by a cavity mode increases with the decrease of τ . As

the coherence time of thermal radiation impinging onto the cavity approaches the cavity

photon lifetime, the constructive interference of the thermal field is improved inside the

cavity, leading to a larger buildup of intracavity energy.

We also investigate a different situation where τ is fixed and τc is varied. By reducing

the temperature T , the coherence time of thermal radiation τc is increased. Meanwhile,

the energy density of thermal radiation is decreased. As shown in Fig. 2.6, the number of
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Figure 2.5. The number of thermal photons in individual cavity modes
nm, calculated via the FDTD method, for a slab cavity with n = 6. The
cavity length L is varied to change τ . The impinging blackbody radiation
has T = 30, 000 K and τc = 0.337 fs. The values of τc/τ are 0.0024, 0.29,
0.43, and 0.56. Lines are drawn to connect the data points at the mode
frequencies ωm = πcm/nL to illustrate its frequency dependence. For τc ≪
τ (only every 5th mode for τ = 143 fs is shown to improve the visibility),
the photon number nm coincides with the Bose-Einstein distribution nT .
When τc ∼ τ , nm deviates from nT .

thermal photons nm in a cavity mode is reduced. This can be easily understood as there

are fewer thermal photons incident onto the cavity at lower T . Nevertheless, nm is larger

than nT (ωm) at the same T . This is because the longer coherence time of the thermal

field results in better constructive interference inside the cavity.

2.4. Analytical Examination and Discussion

To gain a better understanding of our FDTD simulation results in the non-Markovian

regime, we analytically examine the effect of noise correlation time τc on the amount of

thermal noise inside an open cavity.

The transfer matrix formalism is used to examine energy buildup in a slab with index of

refraction n and length L. The specific boundary conditions of an incoming or outgoing
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Figure 2.6. The number of thermal photons in individual cavity modes nm,
calculated via the FDTD method, for a dielectric slab cavity with n = 6
and L = 20 nm. The cavity decay time τ = 1.19 fs. The temperature
of blackbody radiation is varied to change τc. The values of τc/τ are 0.29
(T = 30, 000 K), 0.43 (T = 20, 000 K), and 0.56 (T = 15, 000 K). Black
dashed lines are drawn to connect the data points at the mode frequencies
ωm = πcm/nL to illustrate its frequency dependence. For comparison, the
Bose-Einstein distribution nT (ω) is also plotted (red solid lines) for the same
temperatures.

wave will not be considered because off-resonant frequencies will be examined as well.

First, the electric field inside the cavity must be calculated. This is done by operating

Eqs. 1.42 and 1.43 on an input wave vector

(2.16) b1(x)c0







1

r






=

1

tb







eik̃mnx + rrbe
ik̃mnx

rbe
ik̃mnx + reik̃mnx






.

Using k̃m = πm/nL, the reflectivity r can be calculated via Eq. 1.44 as

(2.17) r =
−M21

M22
=

−(rbe
−iπm + rae

iπm)

rbraeiπm + e−iπm



78

 0

 1

 2

 3

 4

 0  2000  4000  6000  8000  10000

|E
(x

)|
2  (

ar
b.

 u
ni

ts
)

x (nm)

Figure 2.7. Intensity distributions of off-resonant modes for n = 3 and
m = 4.5 (blue), n = 6 and m = 8.5 (red), n = 10 and m = 14.5 (black) in a
dielectric slab of length L = 2400 nm. Larger n values give a higher reflected
field amplitude and a smaller amplitude inside the cavity. Nonetheless, the
energy of off-resonant modes increases as n increases. Vertical lines mark
the cavity boundaries.

Now, from Eq. 2.16, the electric field is given as

(2.18) Ez(x) =
1

tb
(1 + rrb)e

iπmx/L +
1

tb
(rb + r)e−iπmx/L.

|Ez(x)|2 is plotted in Fig. 2.7 for a slab of length L = 2.4 µm for various m and n

values. Intensity distributions for off-resonant frequencies (m = j/2 where j is any positive

integer) are shown for n = 3 (λ = 3199 nm), n = 6 (λ = 3387 nm), and n = 10 (λ = 3309

nm). We see what we would expect, a decrease in amplitude inside the cavity and a higher

reflected amplitude for larger n. The on-resonance intensity distributions were observed

with maximum amplitudes of one both inside and outside the cavity. Both cases agree

almost perfectly with FDTD calculations.



79

103

104

105

 1  3  5  7  9

n2 |E
(x

)|
2 /2

Refractive index n

On resonance
Off resonance

Figure 2.8. Energy inside of a dielectric slab as a function of index of
refraction. Energy at on resonance frequencies (black) equal energy at off
resonance frequencies (red) for n = 1. But even energy at off resonance
frequencies will build up inside the slab.

The intracavity energy as a function of index can now be calculated from Eq. 2.18

(2.19) W (n) =
1

2
n2

∫ L

0

|Ez(x, n)|2dx.

This results in

(2.20) W (n) =
n2L[2m(1 + n2)π + (n2 − 1) sin(2mπ)]

mπ[1 + 6n2 + n4 − (n2 − 1)2 cos(2mπ)]
.

When m is a positive integer (on resonance), the energy scales as W (n) = L(n2 + 1)/4

while it scales as W (n) = n2L/(n2 + 1) when off resonance. Plots for both of these cases

are shown in Fig. 2.8. At n = 1, of course, the two different cases agree.

The energy inside a cavity at an off resonant frequency for large n would increase from

the n = 1 case. It is noted, however, that the field amplitude itself decreases as a function

of n. In other words, 1
2

∫ L

0
|Ez(x, n)|2dx = L/(n2 + 1), when off resonance.
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With FDTD, the ratio of the intracavity EM energy at frequency ω to the energy

density of the thermal source outside the cavity is

(2.21) W (ω) ≡
∫ L

0
dx

[

1
2
ǫ|Ez(x, ω)|2 + 1

2
µ0|Hy(x, ω)|2

]

D(ω, T )
.

This is obtained analytically from the transfer matrix method by rewriting Eq. 2.20

(2.22) W (ω) =
2nc

ω

[

2ωnL(1 + n2)/c+ (n2 − 1) sin(2ωnL/c)

1 + 6n2 + n4 − (n2 − 1)2 cos(2ωnL/c)

]

.

It can be used to calculate the ratio Bm(τc, τ) ≡ nm/nT (ωm), as

(2.23) nm =

[

∫ ωm+1/2

ωm−1/2

dωW (ω)D(ω, T )

]

/~ωm.

In the Markovian regime τc ≪ τ and D(ω, T ) is nearly constant over the frequency

interval of one cavity mode so

Bm(τc, τ) =
D(ωm, T )

~ωmnT (ωm)

∫ ωm+1/2

ωm−1/2

dωW (ω)

=
1

πc

∫ ωm+1/2

ωm−1/2

dωW (ω).(2.24)

We input the same parameters as the FDTD simulation: n = 6, L = 2400 nm, and

τ = 143 fs. As τc approaches zero, the integration of W (ω) from ωm−1/2 to ωm+1/2 gives a

value close to πc. Thus, as shown in the inset of Fig. 2.9, Bm(τc, τ) ≈ 1 for τc/τ ≪ 1. The

deviation of Bm(τc, τ) from one is greater for smaller m. One possible reason is that the

condition δω ≪ ωm no longer holds for small m and there is a large uncertainty in defining
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Figure 2.9. Bm(τc, τ) ≡ nm/nT (ωm) vs. the ratio of noise correlation time
to cavity decay time τc/τ . Bm(τc, τ) depends only on the ratio τc/τ and not
on τc nor τ individually. This plot was generated by fixing τ and varying
τc. Cavity modes of higher m have a larger value of Bm(τc, τ) whether in
the regime τc ∼ τ (main panel) or τc ≪ τ (inset).

the frequency of a cavity mode whose linewidth is comparable to its center frequency. In

other words, the calculation of nm using Eq. 2.23 becomes questionable.

In the non-Markovian regime τc & τ , D(ω, T ) is not constant over the frequency

range of a cavity mode anymore, thus it cannot be taken out of the integral in Eq. 2.23.

The behavior of Bm(τc, τ) in this regime is shown in the main panel of Fig. 2.9. As τc

approaches τ , Bm(τc, τ) no longer stays near one but increases with τc/τ . This result is

consistent with that of the FDTD simulation presented in the previous section. On the

one hand, if τ is fixed and τc is increased by decreasing the temperature T , the absolute

number of thermal photons in a cavity mode nm decreases, but its ratio to the number of

thermal photons in a vacuum mode nT (ωm) increases. On the other hand, if τc is fixed and

τ is decreased by shortening the cavity length L, both nm and nm/nT (ωm) increase. The

departure of nm from nT (ωm) is a direct consequence of the breakdown of the Markovian
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approximation. When the coherence time of thermal radiation is comparable to the cavity

decay time, the Langevin force Γ̂m(t) in Eq. 2.11 is no longer δ-correlated in time, and

Eq. 2.13 is invalid.
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CHAPTER 3

Atomic State Population and Polarization Fluctuations

As discussed earlier, FDTD has been extensively used in solving Maxwell’s equations

for dynamic electromagnetic (EM) fields. Although the FDTD method has become a

powerful tool in computational electrodynamics, it has been applied mostly to classical

or semiclassical problems without noise. We have learned, however, that noise plays an

important role in light-matter interaction.

Our goal is to develop a FDTD-based numerical method to simulate fluctuations in

macroscopic systems caused by interactions of atoms and photons with reservoirs (see Fig.

1.1). Such interactions induce temporal decay of photon number, atomic polarization and

excited state’s population, which can be described phenomenologically by decay constants.

The fluctuation-dissipation theorem demands temporal fluctuations or noise to accompany

these decays. In Ch. 2, we included noise caused by the interaction of the light field with

external reservoir in an open system. In this chapter, we develop a numerical model to

simulate noise caused by the interaction of atoms with reservoirs such as lattice vibrations

and atomic collisions. As an example, we apply the method to a numerical simulation of

superfluorescence in a macroscopic system where the dominant noise is from the atoms

rather than the light field. We then study the effects of noise on lasing in a dielectric slab.
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3.1. Noise Model

Modeling quantum behavior computationally can be challenging considering quantum

operators do not commute. However, some progress can be made by fixing the operator

ordering and uniquely mapping the operators to c-number functions. One example is the

Wigner function [121]. Wigner developed a probability distribution for the simultaneous

values of position and momentum, with the admitted shortcoming that the distribution is

not positive everywhere. Thus, it cannot be interpreted as a true probability distribution.

It is indeed a challenge to find a simple expression for the probability of a configuration

precisely because the probability of momentum and position may not be given simultane-

ously. Glauber and Sudarshan developed the P representation which uses coherent states

as a basis set for the density matrix [122, 123]. Making use of the coherent states does

not require the explicit introduction of coordinate or momentum variables [124]. Similar

to the Wigner function, operators are replaced with c-numbers and fairly accurate results

are obtained when behavior is nearly classical. Results diverge, however, when behavior

becomes nonclassical.

Drummond and Gardiner introduced the positive P representation which allowed P to

be interpreted as a genuine probability density even when considering nonclassical behav-

ior [125]. This allows any state of light to be expressed using the coherent states as a basis

set. Using this and representing the operator evolution using Fokker-Planck equations,

Drummond and Raymer were able to obtain c-number equations without ambiguity [126].

Starting from the quantum Langevin equation within the Markovian approximation, they

derived a set of stochastic c-number differential equations describing light propagation

and atom-light interaction in the many-atom limit. The noise sources in these equations
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are from both the damping and the nonlinearity in the Hamiltonian. The latter represents

the nonclassical component of noise, giving rise to nonclassical statistical behavior. Since

our primary interests lie with classical behavior of macroscopic systems, such as lasing,

we neglect the nonclassical noise in this thesis.

The amplitude of classical noise accompanying the field decay (as discussed in Ch. 2)

is proportional to
√
nT , where nT is the thermal photon number. At room temperature

the number of thermal photons at visible frequencies (~ω ∼ 1 eV) is on the order of 10−17.

This can be interpreted in a quantum mechanical picture as that most of the time there

are no thermal photons at visible frequencies in the system. Thus, the noise related to

field decay is neglected in this chapter. At higher temperatures or longer wavelengths, this

noise becomes significant and it can be incorporated into the FDTD algorithm following

the approach we developed in Ch. 2.

The classical noise related to the pumping and decay of the atomic density matrix can

be expressed as

Γ12 = (ξ1 + iξ2)
√
γpρ22

Γ21 = (ξ1 − iξ2)
√
γpρ22

Γ22 = ξ3
√

ρ22/T1 + Prρ11/T1.(3.1)

These noise terms are associated with ρ12, ρ21, and ρ22 respectively. γp = 1/T2 − 1/2T1 is

the pure dephasing rate in which atomic populations are conserved [127]. The ξj terms

are real, Gaussian, random variables with zero mean and the following correlation relation

(3.2) 〈ξj(t)ξk(t′)〉 = δjkδ(t− t′),
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where j, k = 1, 2, 3. The noise terms Γ12 and Γ21 represent fluctuations corresponding

to decoherence by dephasing, while Γ22 is the fluctuation corresponding to relaxation of

and pumping to the excited state’s population. Only the linear term for pump noise

is included here, a common first order approximation [90]. Furthermore, because we

assume T2 ≪ T1, pump fluctuations are neglected in Γ12 and Γ21 since they are orders of

magnitude smaller than noise due to dephasing. According to Eq. 1.30, the noise terms

for the Bloch vector are reduced to real variables as

Γ1=2ξ1
√
γpρ22

Γ2=−2ξ2
√
γpρ22

Γ3=2ξ3
√

ρ22/T1 + Prρ11/T1.(3.3)

They can be added directly to Eq. 1.35.

In a 1D system, the total number of atoms N are split equally among M grid cells,

giving the number of atoms per cell Ns = N/M . All quantities are defined at each

individual grid cell, e.g., the term ρ3(x) is the number of inverted atoms in one cell

at position x. The number of atoms in each cell is assumed to be constant assuring

ρ̇11 + ρ̇22 = 0. We forcibly keep Ns constant via the relation ρ11 = Ns − ρ22 and only

calculate the excited state’s population ρ22(t). The final stochastic equations to be solved
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are

dρ1(x, t)

dt
=ωaρ2(x, t) −

1

T2
ρ1(x, t) + Γ1(x, t)

dρ2(x, t)

dt
=−ωaρ1(x, t) +

2|γ|
~
Ez(x, t) [2ρ22(x, t) −Ns] −

1

T2
ρ2(x, t) + Γ2(x, t)

dρ22(x, t)

dt
=−|γ|

~
Ez(x, t)ρ2(x, t) −

1

T1
ρ22(x, t) +

Pr

T1
[Ns − ρ22(x, t)] + Γ22(x, t).(3.4)

In the above equation, the steady-state value of ρ3 in Eq. 1.35 is substituted by ρ
(s)
3 =

Ns(Pr − 1)/(Pr + 1), an expression obtained by setting the time derivatives in Eq. 1.35

to zero. ρ11 in the expression of Γ22 in Eq. 3.1 can be replaced by Ns − ρ22.

As previously mentioned, we use a weakly coupled method that is easily implemented

and efficient for 1D systems. The noise terms in Eq. 3.4 are present throughout the

entirety of the simulation and thus, should be incorporated efficiently. After discretization,

the ξi terms are correlated according to 〈ξj(xu, tm)ξk(xv, tn)〉 = (1/∆t)δjkδuvδmn, and

can be generated quickly with the Marsaglia and Bray modification of the Box-Müller

Transformation [119]. Because the noise terms contain
√
ρ22, as seen in Eqs. 3.1 and 3.3,

we are not able to use the weakly coupled scheme to solve for ρ1, ρ2 and ρ22 as precisely

as possible. Instead, the approximation of using the previous time step value

√

ρ
n−1/2
22 is

employed. It is valid as long as the atomic population is varying slowly. For the simulation

of superfluorescence in Sec. 3.2, the maximum change of ρ22 over one time step ∆t is only

0.0007%.
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The discretized equations with noise at each grid point are

En+1
z =En

z +
∆t

ǫ

dHy

dx
− ∆tAρ

n+1/2
1 + ∆tBρ

n+1/2
2(3.5a)

Hn+1/2
y =Hn−1/2

y − ∆t

µ0

dEz

dx
(3.5b)

ρ
n+1/2
1 =ρ

n−1/2
1 +

1

2
∆tωa

(

ρ
n+1/2
2 + ρ

n−1/2
2

)

− 1

2

∆t

T2

(

ρ
n+1/2
1 + ρ

n−1/2
1

)

(3.5c)

+∆tΓ1

ρ
n+1/2
2 =ρ

n−1/2
2 − 1

2
∆tωa

(

ρ
n+1/2
1 + ρ

n−1/2
1

)

− 1

2

∆t

T2

(

ρ
n+1/2
2 + ρ

n−1/2
2

)

(3.5d)

+
2∆t|γ|

~
En

z

(

ρ
n+1/2
22 + ρ

n−1/2
22 −Ns

)

+ ∆tΓ2

ρ
n+1/2
22 =ρ

n−1/2
22 − 1

2

∆t|γ|
~

En
z

(

ρ
n+1/2
2 + ρ

n−1/2
2

)

(3.5e)

−1

2

∆t

T1
(1 + Pr)

(

ρ
n+1/2
22 + ρ

n−1/2
22

)

+∆tPrNs/T1 + ∆tΓ22,

where we have defined

A ≡ |γ|
VsǫT2

B ≡|γ|ωa

Vsǫ
.(3.6)

Equation 3.5 is solved to obtain the time-stepped equations for Ez, Hy, ρ1, ρ2, and

ρ22. This is easy to do if we put Eq. 3.5 in matrix form.

(3.7)













(1 + ∆t/2T2) −∆tωa/2 0 −F

∆tωa/2 (1 + ∆t/2T2) (−2∆tγ/~)En −G

0 (∆tγ/2~)En (1 + ∆t/2T1 + ∆tPr/2T1)−L

































ρ
n+1/2
1

ρ
n+1/2
2

ρ
n+1/2
22

1





















= 0,
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where we have defined

F ≡(1 − ∆t/2T2)ρ
n−1/2
1 + (∆tωa/2)ρ

n−1/2
2 + ∆tΓ1

G ≡(1 − ∆t/2T2)ρ
n−1/2
2 − (∆tωa/2)ρ

n−1/2
1 + (2∆tγ/~)Enρ

n−1/2
22

− (2∆tNsγ/~)En + ∆tΓ2

L ≡(1 − ∆t/2T1 − ∆tPr/2T1)ρ
n−1/2
22 − (∆tγ/2~)Enρ

n−1/2
2 + ∆tPrNs/T1 + ∆tΓ22.(3.8)

Taking the reduced row-echelon form of the matrix on the left side in Eq. 3.7 gives the

final solutions for En
z , H

n+1/2
y , ρ

n+1/2
1 , ρ

n+1/2
2 , and ρ

n+1/2
22 .

These equations without noise (Γi = 0) and no pumping rate (Pr = 0) are verified

by reproducing self-induced transparency (SIT) effects [99]. Figure 3.1 shows how the

normalized population inversion ρ3 is changed by adjusting the amplitude of an incoming

electric field pulse. The π pulse completely excites the two-level atom medium as it travels

through the system. The entire system is initially in the ground state (ρ3 = −1). After

the pulse has passed through the entire system, the entire system is in the excited state

(ρ3 = +1). Examining one grid cell in time would reveal the Bloch vector ~ρ flipping

completely from ~ρ = −1ê3, to ~ρ = 1ê3. The 2π pulse locally excites the two-level atom

medium as it travels through the system. Where the electric field amplitude is largest,

the population inversion is completely excited (ρ3 = 1). Examining one grid cell in time

would reveal the Bloch vector ~ρ flipping completely from ~ρ = −1ê3, to ~ρ = 1ê3, then

back again to ~ρ = −1ê3. The 4π pulse locally excites, de-excites, excites, and de-excites

the two-level atom medium as it travels through the system. Examining one grid cell in
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Figure 3.1. Self-Induced Transparency results showing the electric field
pulse (black) and population inversion (red). The field pulse is traveling
from left to right. The incoming field pulse amplitude is adjusted to corre-
spond to a (top-left) π-pulse, (top-right) 2π-pulse, and (bottom) 4π-pulse.
Excellent agreement is seen with results from Ziolkowski et al.. Note that
the population inversion here is normalized by Ns.

time would reveal the Bloch vector flipping completely from ~ρ = −1ê3, to ~ρ = 1ê3, to

~ρ = −1ê3, to ~ρ = 1ê3, then back again to ~ρ = −1ê3.

3.2. Superfluorescence

We apply the Maxwell-Bloch equations with noise to a FDTD simulation of superflu-

orescence (SF) and compare the results to previous data obtained experimentally [128]

and theoretically [129]. Figure 3.2 shows a diagram of the system studied here. SF is the
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cooperative radiation of an initially inverted but incoherent two-level medium resulting

from spontaneous buildup of a macroscopic coherent dipole. This is an interesting and

suitable case to study with our method because both spatial propagation of light and noise

are important. Noise caused by collisional dephasing can seriously disturb SF and change

the emission character to amplified spontaneous emission (ASE). We simulate the transi-

tion from SF to ASE with increasing dephasing rate, corresponding to the experiment by

Malcuit et al. on super-oxide ions in potassium chloride (KCl:O−
2 ) [128].

Experimentally the ions inside a cylinder of diameter d = 80 µm and length L = 7

mm were excited by a short pulse. The total number of excited ions is N = 3 × 109.

The emission wavelength is λ = 629 nm. The Fresnel number for the excitation cylinder

is F = Ac/λL ∼ 1, where Ac is the area of the cylinder cross-section. T1 = 76 ns, and

T2 was varied via temperature change. The “cooperative lifetime” or the duration of SF

pulse

(3.9) τr =
8πAcT1

3λ2N

is 2.7 ps. The estimated delay time for the SF peak after the excitation pulse

(3.10) τd = τr

[

1

4
ln(2πN)

]2

is 94 ps.

Since F ∼ 1, the EM modes propagating non-parallel to the cylinder axis are not

supported [130]. Those modes propagating along the cylinder axis do not have a strong

radial dependence, nor are there significant diffraction losses. Thus the system, shown

in Fig. 3.2, can be considered as 1D in our FDTD simulation. The grid resolution is
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Figure 3.2. Diagram of the system model used to study superfluorescence.
Though the simulation is carried out in one dimension, the gain atoms are
considered to be in a three-dimensional cylinder of length L = 7 mm and
diameter d = 80 µm. A pump excites the atoms and if the amount of atomic
decoherence is small enough, then a superfluorescence pulse is emitted from
the system.

∆x = 70 nm and the area of the cylinder is Ac = πd2/4, thus providing the value of

Vs in Eq. 3.6. The total running time is τsim = 3 ns. The Courant number S is set to

0.999999. The magic time step, S = 1, was seen to cause an instability in some cases.

Setting S = 1−10−6 preserves the accuracy to an acceptable degree while eliminating the

instability at S = 1. There is some numerical dispersion and reflection from the absorbing

boundary layer, but the error is of the order 10−6. Ignoring non-radiative recombination,

the atomic dipole coupling term

(3.11) |γ| =

√

3λ3~ǫ0
8π2T1

is 1.1 × 10−29 C·m.

The simulation is started with the initial condition of all the atoms being excited

(ρ22 = Ns). However, because the atomic population and polarization operators do not

commute, the uncertainty principle demands a nonvanishing variance in the initial values

of the Bloch vector [130]. This results in a tipping angle θ of the initial Bloch vector

away from the top of Bloch sphere (ρ1 = 0, ρ2 = 0, ρ3 = Ns). The value of θ is given by a
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Figure 3.3. Numerical results of the output EM energy (normalized by ǫ0/2
here) from initially-inverted two-level atoms, obtained by FDTD solution of
the Maxwell-Bloch equations with noise. The left three columns show the
output energy for three random realizations. The last column on the right
shows the output energy averaged over 30 random realizations. All insets
in the last column magnify the temporal range 0 < t < 1 ns. Dephasing
time T2 = 100 ps (first row), 33.3 ps (second row), 25.0 ps (third row), and
14.3 ps (fourth row) [131].

Gaussian random variable centered at zero with a standard deviation θT = 2/
√
Ns. Since

there is no incoherent pumping at t > 0, Pr is set to 0.

Figure 3.3 shows the output EM energy at a spatial grid point outside the system for

four different values of the dephasing time T2. When T2 = 100 ps > τd, the cooperative
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emission characteristic of SF is clearly seen in Fig. 3.3(a). The number of atoms that

emit cooperatively is estimated to be

(3.12) Nc =
8πcT1Ac

3λ2L
= 3.5 × 108

and is known as the Arecchi-Courtens cooperation number. Since Nc < N = 3 × 109,

the SF oscillates in time, with the maximal emission intensity at t ∼ 170 ps. This

behavior agrees well with the previous result in [129]. For T2 = 33.3 ps < τd, there is

enough dephasing to disturb the cooperative emission. The emitted pulse broadens and

the time delay increases, as shown in Fig. 3.3(b). For T2 = 25 ps, a further damping

of superfluorescence is seen in Fig. 3.3(c). As T2 decreases more, the pulse continues to

broaden but the time delay begins to decrease. When T2 reaches the critical value
√
τrτd

= 15.9 ps, the amount of dephasing is sufficient to prevent the occurrence of cooperative

emission. No macroscopic dipole moment can build up and the atoms simply respond

to the instantaneous value of the radiation field. Hence, SF is replaced by ASE. Figure

3.3(d) plots the ASE pulse for T2 = 14.3 ps. The time delay is almost immeasurably

small and the emission intensity is very noisy. Figure 3.4 compares the delay times taken

from our FDTD simulations to previous results obtained experimentally [128] and by full

quantum-mechanical theory of SF [129]. The excellent agreement validates our FDTD-

based numerical method. We emphasize that inclusion of the noise terms in Eq. 3.4 is

essential to obtain the correct variation of τd with T2. As found in [128], the previous

approach of modeling the initial fluctuations as random tipping angles of the Bloch vector

and ignoring the noise at later times brings about good agreement with experiment only
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Figure 3.4. Comparison of delay times of emission pulse obtained by our
numerical simulation (black solid circles) with previous experimental data
(red crosses) and quantum-mechanical calculation results (blue open di-
amonds). Numerical delay times are obtained from the emission pulses
averaged over 30 realizations.

when T2 is large making the amplitude of the noise terms in Eq. 3.4 small. As the

dephasing rate increases, fluctuations can no longer be modeled simply as an initial noise.

We have also studied the decoherence process. As calculated in Sec. 1.4.3, the am-

plitude of the Bloch vector ρB ≡ |~ρ| =
√

ρ2
1 + ρ2

2 + ρ2
3 =

√

N2
s + 4ρ12ρ21 − 4ρ22ρ11. In

the absence of decoherence, ρ12ρ21 = ρ22ρ11, and ρB = Ns. The presence of decoherence

decreases the off-diagonal terms of the density matrix, thus ρ12ρ21 < ρ22ρ11 and ρB < Ns

[104]. We estimate the degree of decoherence through the ratio ρ3/ρB, which is plotted

in Fig. 3.5 for four different values of T2. Each curve is obtained by spatial average of ρ3

and ρB over the entire excitation region and then ensemble-average over 30 realizations.

When the dephasing time is large (T2 > τd), a macroscopic dipole moment is spon-

taneously formed. The enhanced radiative decay rate results in quick depletion of the

population inversion ρ3. Despite T2 ≪ T1, the decay of ρ1 and ρ2 by dephasing is over-

shadowed by the decay of ρ3 by SF, leading to a rapid drop of ρ3/ρB in time. This behavior
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Figure 3.5. The ratio ρ3/ρB as a function of time for T2 = 100 ps (red
dotted line), 33.3 ps (blue dashed line), 25.0 ps (green solid line), and 14.3
ps (black dash-dotted line).

is shown by the red dotted line in Fig. 3.5. The non-monotonic decay is caused by SF

oscillations as can be seen in Fig. 3.3(a). The oscillatory SF is a result of the number

of atoms being greater than the Arecchi-Courtens cooperation number (N > Nc). The

intensity oscillation leads to an oscillation of population inversion which is 90 degrees out

of phase. The local maximum of ρ3 at t = 320 ps (red dotted curve in Fig. 3.5) occurs

just before the second peak of intensity at t = 370 ps [Fig. 3.3(a)]. As T2 is reduced, the

increased amount of decoherence frustrates the buildup of a macroscopic dipole moment

and reduces the radiative decay rate. Consequently, the depletion of population inversion

is slowed down. It leads to a slower decay of ρ3/ρB and the disappearance of damped

oscillations. Finally when the dephasing time is small enough (T2 <
√
τrτd), the system

stays in a decoherent state, and ρ3/ρB remains close to one for a very long time.
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3.3. Lasing Behavior in a Dielectric Slab

We now apply the Maxwell-Bloch equations with noise to a simulation of lasing in a

1D laser made up of a dielectric slab with spatially uniform index of refraction n = 3 and

length L = 1 µm. In this section, incoherent pumping is included (Pr > 0) requiring the

inclusion of all noise terms from Eqs. 3.1 and 3.3.

At this point it is important to distinguish between a laser amplifier and a laser

oscillator [14]. Let us examine a system without noise first. If a gain medium is present

but the cavity loss is greater than the gain, the output will be amplified but lasing

oscillation will not take place. This is a laser amplifier. Lasing oscillation occurs when

the net gain is greater than the leakage loss due to the openness of the cavity. When the

pumping rate Pr is above a threshold value, the electromagnetic fields build up inside the

system until a steady state is reached. When lasing oscillation occurs, the gain completely

compensates for leakage loss and the linewidth collapses to zero [132]. Definitions of the

lasing threshold are varied, so the lasing threshold is defined here as the pumping rate at

which lasing oscillation occurs. Introducing noise complicates the matter somewhat and

makes the threshold “fuzzy” [133].

Population inversion (ρ3 > 0) amplifies spontaneous emission. However, spontaneously

emitted photons deplete gain for lasing modes [103]. Though the condition necessary

(threshold pumping rate) to achieve lasing oscillation without noise may be satisfied, the

same may not be true of the same system with noise. Spontaneous emission stimulates

emission of photons with the same properties as the spontaneously emitted photons. This

reduces the population inversion, providing less gain for cavity modes, thereby increasing

the threshold pumping rate for lasing oscillation. Nevertheless, a narrowing of modal
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linewidths is seen even below the threshold for lasing oscillation. The largest width

of a peak is determined by the cold cavity decay rate. Any amount of amplification

decreases the width from this value. In other words, photons at modal frequencies have a

longer lifetime than photons off-resonance so more photons are generated via amplification

around modal frequencies. A laser amplifier operates in this regime, below the threshold

for lasing oscillation, and amplifies the power. As discussed in Sec. 1.2.1, this amplified

spontaneous emission (ASE) also causes narrowing of the spectrum around the atomic

transition frequency, but is still much more broad than the free spectral range of cavity

modes. Both forms of spectral narrowing shall be observed in this section and discussed

more in-depth in the next chapter.

Studying lasing behavior in a dielectric slab is a good prelude to studying behavior

in random lasers. The quasi mode frequencies and decay rates of the modes of dielectric

slabs are known very precisely (see Sec. 1.4.4). The ratio of quasi mode decay rates to

frequency spacing g = ki/dk (independent of frequency in the dielectric slab) is known as

the Thouless number [134]. From Eq. 1.53, an expression for g is obtained as

(3.13) g =
−1

2π
ln

[

(n− 1)2

(n+ 1)2

]

,

For n = 3 (and L = 1 µm), g = 0.2, meaning the quasi modes are very well separated.

Thus, clear and non-overlapping lasing peaks should be discernible from the calculated

lasing spectra.

Table 3.1 shows the parameters of interest and defines the variables used in this section.

Note that the free spectral range and gain width may also be expressed in terms of

wavelength and are denoted by dλ and ∆λa, respectively. The gain width here will be



99

Physical Quantity Quantitative Value
Optical period Tλ ≈ 1.7 fs (430 nm < λ < 600 nm)
Quasi mode wavelengths λm′ = 2nL/m′

Lasing mode wavelengths λm

Excitation pulse center wavelength λ0

Excitation pulse spectral width δλ0

Excited state lifetime T1 = 1.0 ps
Dephasing time T2 = 6.4 fs
Gain center λa = λm′=12

Gain spectral width ∆ωa = 1/T1 + 2/T2

Atomic density N/V = 9.4 × 1023

Cavity lifetime τ = 14 fs
Free spectral range dk = π/nL
Spatial grid step ∆x = 1.0 nm
Temporal step ∆t = 1.7 as

Table 3.1. Variables and parameters of the light, gain material, cavity, and
FDTD grid settings used for the simulation of the dielectric slab (n = 3,
L = 1 µm).

∆λa = dλ ≈ 45 nm. The excitation pulse is only applicable to simulations without

noise when some arbitrary input energy is required to initialize the system. In these

cases, the pulse width is equal to the gain spectrum width, δλ0 = ∆λa. Though a time

step ∆t = 1.67 as (S = 1/2) is used to accurately propagate the sharp noise impulses

in the numerical grid, data is only output every 8 time steps (decimation by 8 gives a

temporal spacing of 13.4 as) to reduce the size of data files. High temporal resolution

is not needed in calculating characteristics of the evolution of the system. The effect of

this on calculations of the spectral properties is negligible since ∆t merely determines the

maximum frequency ωmax as discussed in Ch. 2. Here, even 8∆t ≪ π/ωmax. Spectra

and the evolution of modes in time (using a spectrogram) for decimated data and original

data were compared. The differences were less than 1%.
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An issue concerning the simulation of fluctuations arises when the population inversion

is either very large (ρ3 near +1) or very small (ρ3 near -1). We find that if systems are

initialized with all atoms in their ground state (ρ3 = −1), the fluctuations associated with

the pumping rate Pr are at their largest because ρ11 is at its largest value. Such large

fluctuations cannot be simulated accurately and the population inversion drops below -1,

which is physically impossible. It corresponds to a negative excited state population. To

avoid this issue, we initialize all systems at the transparency point, where the excited

state population of atoms is equal to that of the ground state (ρ3 = 0). Similarly, when

ρ3 approaches +1, the fluctuations associated with radiative decay are at their largest

because ρ22 is at its largest value. This causes the inversion to rise about +1, also

physically impossible. It corresponds to a negative ground state population. This error

occurs in spatial regions of low EM field intensity, where the ground state population is

smallest. This numerical issue may be avoided by simply increasing the atomic density.

Physically, there is a threshold for the atomic density, below which lasing cannot occur

[90]. In other words, without enough atoms to provide gain, the losses are too great for

lasing to occur. For a volume V , the threshold NLC is given by

(3.14)
NLC

V
=

(

2n3

cλ2
a

)

T1∆ωa

τ
,

where τ is the cavity mode lifetime. This threshold is only an approximation; the actual

threshold NLC is usually higher (from experience, 2-4 times as high). If the atomic

density is set at this threshold density, the ground state population is nearly zero in

spatial regions of low field intensity. Thus, fluctuations associated with radiative decay

easily force the ground state population to become negative. Though pumping and decay
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Figure 3.6. Population inversion at one spatial location of low intensity
(x = L/2). The atomic population is increased as N = 1.9NLC (green line),
to N = 4NLC (red line), N = 5NLC (blue line), N = 8NLC (black line).
With volume fixed, the atomic density increases withN . ForN < 8NLC , the
population inversion rises above +1 meaning the ground state population
is negative. For N = 8NLC , the depletion of the ground state is restricted,
thereby not allowing it to become negative. Simulations here were initialized
at their steady-state values to decrease the runtime.

rates are proportional to the instantaneous populations, increasing the atomic density

provides a buffer in that the absolute number of pumped and decaying atoms increases.

This restricts the depletion of the ground state as evidenced by Fig. 3.6, which shows

the temporal behavior of the population inversion at a spatial location of low intensity.

Because of the increase in the absolute number of atoms, the populations are prevented

from becoming negative. In this figure, the system was initialized to the steady-state

population inversion ρ
(s)
3 , found by setting the rate equations to zero and disregarding the

stimulated emission term.

Figure 3.6 presents results from a small pumping rate and a very short simulation

time. To obtain a population density which forces positiveness of populations for a large

range of pumping rates, we set the pumping rate to a large value (Pr = 100), and changing

N until negative populations are no longer an issue even for long simulation times (∼ 100
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Figure 3.7. Average output intensity 〈I(t)〉 taken from the last 1% of the
simulation time vs. pumping rate Pr with λa = 500 nm (wavelength of
quasi mode m′ = 12). As the pumping rate is increased from 0, the system
will reach the transparency point at Pr = 1. (a) Above a threshold pumping
rate just greater than 1, the gain increases linearly with the pumping rate.
Fitting a straight line to this curve gives an estimated threshold pumping
rate of Pr = 1.03. (b) 〈I(t)〉 vs. Pr plotted on a log scale. The vertical line
A marks the threshold pumping rate found in (a) Pr = 1.03. The vertical
line B marks Pr = 3.00.

ps). N = 60NLC meets this criterion, thereby allowing an investigation of a large range

of pumping rates without being concerned with numerical error.

3.3.1. Intensity and Spectral Behavior

The average output intensity in the steady-state regime, averaged over time 〈I(t)〉 is now

examined as the pumping rate Pr is increased. The result is shown in Fig. 3.7, where

the atomic transition wavelength is centered on quasi mode 12 (λm′=12 = 500 nm). Only

results from simulations including noise are shown.

As Pr increases from zero, the system reaches the transparency point at Pr = 1.

This is where the excited state population of atoms is equal to that of the ground state
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population; with noise the spatial average is taken (〈ρ3(x)〉 = 0). Increasing Pr further,

the lasing threshold is reached and intensity increases linearly, as shown in Fig. 3.7(a).

This linear increase is characteristic of lasing oscillation which efficiently converts input

energy into laser output. Some define a lasing threshold by fitting a straight line to this

linear region and marking the intercept with the Pr axis as the lasing threshold. In this

case, the intercept is Pr ≈ 1.03. However, a log-log plot [Fig. 3.7(b)] shows the fuzziness

of the lasing threshold. At Pr = 1.03, marked by the vertical line A in Fig. 3.7(b), 〈I(t)〉

is increasing with a super-linear rate meaning lasing oscillation has not yet begun.

The emission spectra reveal more information. First, we shall follow the procedure by

Wu and Cao [36] to remove the influence of obvious ASE spikes. Single spontaneously

emitted photons may travel through the gain medium and become amplified. Each photon

is emitted with a single frequency, but many photons are emitted over a large range of

frequencies determined by the gain medium. Thus, the spectral width of spikes due to

these photons is determined by the spectral resolution, which in this case is the integration

time used for the Fourier transformation. This produces many spikes over the entire

spectrum. One way of differentiating between ASE spikes and lasing peaks is to smooth

the spectrum using three-adjacent-point averaging (3pa) at each discrete data point λq

via

(3.15) I3pa(λq) =
1

3

q+1
∑

j=q−1

|E(λj)|2.

Although the large ASE spikes are reduced somewhat with this method, their influence

is not completely removed. For small pumping rates, the modal peaks are orders of
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Figure 3.8. Steady-state output intensity I3pa(λ) of a dielectric slab laser
including noise for (a) Pr = 1.02, (b) Pr = 1.03, (c) Pr = 1.10, and (d)
Pr = 3.00. Data was smoothed via Eq. 3.15.

magnitude more broad than the ASE spikes. Thus, the sharp delta-function spikes for

Pr ≤ 1.10 (Fig. 3.8) should not be interpreted as lasing peaks.

Figures 3.8(a) and (b) show the spectra for pump rates Pr = 1.02 and Pr = 1.03,

respectively. The spectra were calculated using a Fourier transformation [135] over the

temporal range 0.33 ps – 3.3 ps. For Pr = 1.02 [Fig. 3.8(a)], there is a broad peak at the

wavelength λ ≈ λm′=12 = 500 nm. Due to gain, the spectral width of this peak is slightly

smaller than the atomic linewidth (and the free spectral range) ∆λa = dλ. Behavior
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here is clearly due to ASE since 〈ρ3(x)〉 > 0. For Pr = 1.03 [Fig. 3.8(b)], a narrower

peak emerges from the background with a linewidth smaller than the spacing between

neighboring quasi modes. Nevertheless, Fig. 3.7(b) reveals lasing oscillation has not yet

begun for this pumping rate. The same can be said of Fig. 3.8(c), where Pr = 1.10. Side

peaks are also seen clearly in Figs. 3.8(a-c). These correspond to spontaneous emission

into other cavity modes, following the discussion at the beginning of this section.

As the pumping rate increases to Pr = 3.00 [Fig. 3.8(d)], the linewidth reduces

beyond the spectral resolution and the peak is represented by a single data point. Due

to its correspondence with quasi mode m′ = 12, we name this lasing mode m = 12 with

λm=12 ≈ λm′=12 = 500 nm. This pumping rate is marked in Fig. 3.7(b) as vertical line

B, where the 〈I(t)〉 curve begins to return to a linear increase with Pr. With λa centered

on quasi mode 12 and a gain spectral width equal to the free spectral range, this laser

operates in the single-mode regime. As shall be shown in the next chapter, however, noise

can prohibit single-mode lasing when modes are not as well separated.

3.3.2. Linewidth

We now examine the mode linewidth as the pumping rate increases. For very large

pumping rates (Pr > 3.00), where lasing oscillation has clearly manifested, it is difficult

to obtain mode linewidths due to the computational burden of long simulation times (re-

quired for adequate spectral resolution). Thus, we focus on the behavior of the linewidth

in the ASE region approaching the lasing oscillation region.
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Figure 3.9. Steady-state output intensity |E(k)|2 including noise for Pr =
1.10, above the lasing threshold. For this pumping rate, the lasing peak
is dramatically narrower than smaller pumping rates. Data is plotted in
frequency space to illustrate the symmetry of the spectrum.

Not including noise results in a lasing peak in the emission spectrum with a delta

function having zero linewidth. The ‘width’ of the peak is only determined by the inte-

gration time used for the Fourier transformation. However, spontaneous emission forces

the phase of the mode operator to undergo a sort of Brownian motion [132] and broaden

the delta function into a Lorentzian. Knowing the functional form of the curve, we are

able to determine the linewidth of modes.

We study mode 12 shown in Fig. 3.8. As the pumping rate increases, the linewidth

of this mode clearly reduces. Though for smaller pumping rates this is not due to lasing

action, ASE dramatically reduces linewidths as well (see discussion in Sec. 1.2.1). The

spectrum at an intermediate pumping rate Pr = 1.10 [Fig. 3.9] is chosen as a representa-

tive spectrum on which to test the following linewidth calculation method. Note that data

is now plotted in terms of frequency k. Due to the symmetry in k, finding the linewidth

is simpler than when considering λ.
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There are two issues here in objectively obtaining the linewidth of the modes: the

noisiness of the spectrum and the background. Fitting a Lorentzian curve to noisy data

may be possible after smoothing the data and using a high-pass filter to remove the

background. However, methods of smoothing and filtering can be extremely subjective.

Instead, we use a “Lorentz error function” (not to be confused with the Lorentzian error

function). An error function is similar to a cumulative distribution function, but inte-

grated from 0 to k rather than ∞ to k. If the Lorentzian function L(k) is centered at k0

rather than 0, then

(3.16) L(k) =

(

2Al

π

)

s2

(k − k0)2 + s2
,

where Al is the amplitude and s is the HWHM. The Lorentz error function is

(3.17) LEF (k) ≡
∫ k

k0

L(k′)dk′ =

(

2Als

π

)

tan−1

(

k − k0

s

)

.

Integrations are limited to the spectral range of the modes. To determine this range, we

find the minimum of |E(k)|2 between neighboring modes. In this slab case, modes are

so well separated that the spectral range of quasi modes may be used. For example, the

frequency integration range for lasing mode 12 is given by km′=11.5 < k < km′=12.5.

It is straightforward to measure the linewidth δk = 2s of the Lorentzian curve by

examining LEF (k) because the noisiness associated with the spectrum itself is gone. Figure

3.10 shows how this is done and Fig. 3.11 shows an example of LEF (k) resulting from

integration of the data in Fig. 3.9. We see that

(3.18) lim
k→∞

(

2Als

π

)

tan−1

(

k − k0

s

)

= Als
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Figure 3.10. The Lorentz error function LEF (k) asymptotically approaches
Als. At the half max Als/2, LEF (k) has reached the half width s.

and LEF (k0 ± s) = ±Als/2. Thus, we may measure s after obtaining LEF from the

integral in Eq. 3.17. The background itself is still large, but this may be incorporated

into the error function if the background is relatively flat. A constant term +C need only

be added to Eq. 3.16 thereby changing Eq. 3.17 to

(3.19) LEF (k) =

(

2Als

π

)

tan−1

(

k − k0

s

)

+ C(k − k0).

A straightforward measurement of the half width at half max s is found to give a

reasonable estimate of the linewidth. However, choosing the point Als/2 at which to

measure s is fairly subjective. Moreover, the measurements of s on either side of k0

are typically different due to the background not being completely flat. The non-flat

background of the spectrum makes it difficult to predict how its error function will behave.

This makes these measurements unreliable.
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Figure 3.11. (a) LEF (k) obtained for mode 12 from the spectrum Fig. 3.9.
The fitting equation was Eq. 3.17. The data, and thus the fit, is asymmetric
due to the background resulting in some fitting error. The width found was
s = 0.0952 × 10−2 µm−1 ⇒ δλ ≈ 7.53 nm. (b) The fitted region was
limited to k0 ± 3s, using s calculated in (a). Vertical black lines mark the
fitting region. The fitting equation was Eq. 3.19. The width found was
s = 0.0955 × 10−2 µm−1 ⇒ δλ ≈ 7.56 nm.

Therefore, we use the software Fityk [136] to fit the data obtained by the integral in

Eq. 3.17. The function of merit is chi-square:

(3.20) χ2(a) =

N
∑

i=1

[

yi − y(xi; a)

σi

]2

=

N
∑

i=1

wi [yi − y(xi; a)]
2

Weights are based on standard deviations, wi = 1/σ2
i and squares of residuals are min-

imized. The global minimum of χ2 is searched for. Fityk implements the Levenberg-

Marquardt optimization method. It is well known and described in many standard text-

books (e.g., [137]). There are three fitting parameters in Eq. 3.16: Al, s, and k0. Initial-

ization of the center frequency k0 may be done objectively through a maximum finding

routine after the data has been smoothed with iterative three-adjacent-point averaging

(i3pa). With I
(0)
3pa(kq) defined by Eq. 3.15, the smoothed function Ii3pa(kq) at each discrete
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wavenumber kq is explicitly calculated as

(3.21) Ii3pa(kq) =

Ms/3
∑

u=1

q+1
∑

j=q−1

I
(u−1)
3pa (kj),

where Ms is the total number of data points in the spectrum and the sum over i is done

recursively. The number of iterations Ms/3 was determined by trial and error. Careful

examination of the original spectra help determine a valid frequency range so that the

smoothing procedure does not destroy other lasing peaks that might be within. Note

that the smoothed spectrum Ii3pa(k) is only used to find the initial value of k0 (though it

may be adjusted slightly during fitting). Information concerning linewidth is effectively

destroyed by this smoothing. No matter the initial values of the fitting parameters, we

have found that the Levenberg-Marquardt method always manages to converge to a single

solution here (though it will take longer if the initial values are further from the solution,

of course).

The results of fitting the analytical form of LEF (k) to the integrated data are shown

in Fig. 3.11(a). The integration in this case was performed over the spectral region

km′=11.5 < k < km′=12.5. The linewidth in terms of wavelength is found by

(3.22) δλ =
4πs

k2
0

.

The data is fit extremely well, with the fit yielding a linewidth of δλ12 ≈ 7.53 nm. As

the linewidth becomes increasingly narrow, background data from spectral regions far

away from k0 make it more difficult to find an accurate fit. Thus, we take the linewidth

from the calculation above and consider a smaller spectral region, e.g., ±3s. This range
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Figure 3.12. Lorentzian curve L(k) (black dashed line) constructed from
fitting the spectrum |E(k)|2 (red crosses). Fit was obtained from Eq. 3.19
[see Fig. 3.11(b)]. The linewidth is approximately 0.19 µm−1 (7.6 nm).

was found by trial and error to give the most consistent results. Within this range, the

background is flatter, so we employ Eq. 3.19 with the added constant term to fit the

data. The result is shown in Fig. 3.11(b). When limiting the fit to a smaller range, the

areas of high curvature are fit much better, but the regions further away from the center

frequency are fit poorly. Comparing the result from Figs. 3.11(a) and (b), we see there is

not much difference (≈ 0.4% difference). However, this procedure proves useful for larger

pumping rates where linewidths are smaller.

To see the results of the fitting more explicitly, Fig. 3.12 plots the Lorentzian function

of Eq. 3.16 using the parameters from the fit in Fig. 3.11(b). Since the Lorentz error

function is essentially an average of the noisy spectrum, the resulting Lorentzian curve

from the fit appears as an average of the spectrum.

We now use this method to examine the linewidth as the pumping rate increases.

Because we already know the qualitative behavior of the linewidth with respect to Pr,
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Figure 3.13. Linewidth δλ12 of lasing mode 12 (red circles) and pumping
rate (green asterisks) vs. the steady-state modal intensity 〈I12(k)〉. The
slope of the linear fit (black line) to the linewidth curve is −1.05 ± 4.54%,
meaning δλ12 ∝ 〈I12(k)〉−1, the linewidth trend predicted by Schawlow and
Townes.

the linewidth is instead compared with the steady-state intensity of the mode itself 〈I12〉.

Schawlow and Townes predicted [12] how the linewidth should behave with respect to

modal power, which is equivalent to intensity in our case. Ignoring the coefficients, they

found δλ ∝ 〈I〉−1. Figure 3.13 reveals the data and a linear fit of log10[δλ12] to log10[〈I12〉].

The slope is approximately -1 meaning δλ ∝ 〈I〉−1. The range of fitting was determined

by the threshold pumping rate and the pumping rate at which the linewidth is no longer

calculable due to limitations on the spectral resolution. Note that this region may be

extended by simply extending the simulation runtime, but the data presented is enough

to witness the Schawlow-Townes linewidth behavior.
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CHAPTER 4

Effects of Noise on Random Lasers

A FDTD-based numerical method to simulate fluctuations in macroscopic systems

without prior knowledge of cavity modes is most useful when studying open complex

systems. For example, it can be difficult to study random systems where information

about the modes of a random system is not readily available. In higher dimensional

(> 1) random lasers, when the localization length is larger than the system size, discrete

lasing peaks are still observed. These peaks cannot correspond to spatially localized

modes, so their origin has been the subject of much debate. Additionally, if the cavity

is very leaky, the significant spectral overlap of quasi modes of the cold cavity makes it

difficult to distinguish one mode from another. If lasing oscillation occurs in this type of

system, it may be difficult to determine the lasing characteristics. For example, lasing

with nonresonant feedback produces a continuous spectrum resulting in emission statistics

which differ greatly from the statistics of ordinary lasers [138, 139, 140, 141]. But is the

continuity of the spectrum due to intrinsic spectral overlap of lasing modes or is it that

experimental observations have a finite spectral resolution which cannot detect the sharp

closely spaced lasing peaks? Furthermore, it can be difficult to distinguish true lasing

oscillation due to nonresonant feedback from amplified spontaneous emission (ASE). In

this chapter, we employ the numerical model developed in the previous chapter to simulate

noise in random lasers. A random laser with overlapping modes is simulated which takes

advantage of the benefits provided by this method. Without noise, the transition to lasing
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oscillation is clear and easily defined. With noise, there can be a significant transition

region from amplified spontaneous emission to lasing oscillation. It will be shown that a

lasing threshold is not so easily defined in this case. Numerical investigation into these

poorly understood regimes of operation in weakly scattering random lasers, ASE and

lasing with nonresonant feedback, is initiated here. It is hoped that future studies with

this method will provide clues toward answering the above questions and clarifying the

mechanisms responsible for lasing in such systems.

As in the previous chapter, the dominant noise is from the atoms rather than the

light field. The amplitude of classical noise accompanying the field decay (as discussed

in Ch. 2) is proportional to
√
nT , where nT is the thermal photon number. At room

temperature the number of thermal photons at visible frequencies (~ω ∼ 1 eV) is on the

order of 10−17. This can be interpreted in a quantum mechanical picture as that most

of the time there are no thermal photons at visible frequencies in the system. Thus, the

noise related to field decay is neglected in this chapter. At higher temperatures or longer

wavelengths, this noise becomes significant and it can be incorporated into the FDTD

algorithm following the approach we developed in Ch. 2.

First, information concerning the three different random systems studied here and

certain numerical issues is presented in Sec. 4.1. An analysis of these systems using the

linear gain model (see Sec. 1.4.4.2) in Sec. 4.2 provides a solid basis of understanding.

These results are compared to those using the Maxwell-Bloch equations both with and

without noise in Sec. 4.3. Section 4.4 presents a summary of all results in this chapter.
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Figure 4.1. Intensity distributions of representative modes in a random sys-
tem with ∆n = 0.25, λ = 10.8 µm−1 (solid line) and ∆n = 0.05, λ = 10.6
µm−1 (dashed line). With ∆n = 0.25, modes are typically more concen-
trated within the random system while for ∆n = 0.05, modes are concen-
trated on the outer boundaries of the system.

4.1. Random System

The 1D random system considered in this chapter is composed of N = 41 layers.

Dielectric layers with index of refraction n1 > 1 alternate with air gaps (n2 = 1) resulting

in a spatially modulated index of refraction n(x). The scattering strength may be varied

by adjusting the index contrast ∆n = n1/n2 −1. The system is randomized by specifying

different thicknesses for each of the layers as d1,2 = 〈d1,2〉 (1 + ηζ) where 〈d1〉and 〈d2〉 are

the average thicknesses of the layers, 0 < η < 1 represents the degree of randomness, and

ζ is a random number in (-1,1). The average thicknesses are 〈d1〉 = 100 nm and 〈d2〉 = 200

nm giving a total average length of 〈L〉 = 6100 nm. The grid origin is set at x = 0 and

the length of the random structure L is normalized to 〈L〉. The degree of randomness is

set to η = 0.9 and the index of refraction outside the random media is n0 = 1.
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Three regimes shall be studied in this chapter by adjusting the refractive index n1 and

the spatial gain region. In the first regime, the indices of refraction of the dielectric layers

are n1 = 1.25 and the air gaps n2 = 1. This yields a localization length ξ & L. Though

not in the localization regime, modal intensity distributions, shown in Fig. 4.1, are more

concentrated inside the system than in the ballistic case where intensity distributions are

concentrated on the outer boundaries of the system. As will be shown, the changes due

to noise are less significant in this regime than in the ballistic regime. In the second

regime, the indices of refraction of the dielectric layers are n1 = 1.05 and the air gaps

n2 = 1. This is an example of a random 1D weakly scattering system. The parameters

yield a localization length ξ ≫ L, putting the system in the ballistic regime. As indicated

by experiments and preliminary numerical investigations, discrete lasing peaks seem to

manifest themselves more clearly with partial pumping. This notion shall be tested with

noise included. Thus, the third system studied is a random laser in the ballistic regime

with partial pumping.

The Thouless number g is used again to reveal the amount of overlap of quasi modes of

this random system. Because the quasi mode decay rates and frequency spacing between

different modes are no longer independent of frequency, we calculate the ratio of the

average quasi mode decay rate to the average frequency spacing g = 〈ki〉 / 〈dk〉. Figure

4.2 shows the transmission spectrum T (k) for both cases of index contrast. With higher

index contrast g = 0.5, meaning mode spacing is twice the average mode width. For lower

index contrast, g = 1.0, meaning the quasi modes are no longer separated, but neither

are they significantly overlapping. In 1D, the decay rate and frequency spacing reduce

at the same rate with increasing L. Thus, the Thouless number is mostly dependent on
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Figure 4.2. Transmission spectrum T (k) for ∆n = 0.25 (solid line), ∆n =
0.05 (dashed line), and the gain curve (dotted line) for the Maxwell-Bloch
simulations. The Thouless number is g = 0.53 for ∆n = 0.25 and g = 1.00
for ∆n = 0.05. The gain curve spans roughly ten modes in each case.

the index of refraction and can be approximated using the expression obtained for the

dielectric slab (Eq. 3.13)

(4.1) g ≈ −1

2π
ln

[

(neff − 1)2

(neff + 1)2

]

,

where neff is the effective index of refraction for the random system. Even for an incred-

ibly small index contrast ∆n = 10−4, the Thouless number is only 3. However, we would

like to avoid such a small index contrast since it may present numerical problems and does

not increase the Thouless number greatly. Nevertheless, a large amount of information

may be obtained for g = 1. Modes are clearly overlapping to a greater extent than in the

dielectric slab case where g = 0.2.

Table 4.1 shows the parameters of interest and defines the variables used in this section.

Note that the free spectral range and gain width may also be expressed in terms of

wavelength and are denoted by dλ and ∆λa, respectively. The gain width here is ∆λa =
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Physical Quantity Quantitative Value
Optical period Tλ ≈ 2 fs (400 nm < λ < 1200 nm)
Quasi mode wavelengths λm′

Lasing mode wavelengths λm

Excitation wavelength λ0

Excitation spectral width δλ0

Excited state lifetime T1 = 1.0 ps
Dephasing time T2 = 1.3 fs
Gain center λa = 600 nm
Gain spectral width ∆ωa = 1/T1 + 2/T2

Atomic density N/V = 4.3 × 1023

Spatial grid step ∆x = 1.0 nm
Temporal step ∆t = 1.7 as

Table 4.1. Variables and parameters of the light, gain material, cavity, and
FDTD grid settings used for the simulation of the random system (L = 6.1
µm).

10(dλ) ≈ 267 nm, shown in terms of the wavenumber k in Fig. 4.2. The excitation pulse is

only applicable to simulations without noise when some arbitrary input energy is required

to initialize the system. In these cases, δλ0 = ∆λa. Though a time step ∆t = 1.67 as is

used to accurately propagate the sharp noise impulses in the numerical grid, data is only

output every 8 time steps (decimation by 8 gives a temporal spacing of 13.3 as) to reduce

the size of data files.

The random laser exhibits the same numerical issue as the dielectric slab laser as shown

in Fig. 3.6. To obtain a population density which retains positiveness of populations for

a large range of pumping rates, we set the pumping rate to a large value (Pr = 100), and

changing N until negative populations are no longer an issue even for long simulation

times (∼ 100 ps). N = 60NLC still meets this criterion, thereby allowing an investigation

of a large range of pumping rates without being concerned with numerical error.
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Furthermore, the random laser exhibits a numerical issue not present in the dielectric

slab case. With the dielectric layers of index n1 > 1 separated by air gaps n2 = 1,

adding noise with high frequency components couples them to high frequency modes

resonating between two dielectric layers. These modes have a wavelength λ < 200 nm,

much smaller than the atomic transition wavelength λa = 600 nm. Being so far from the

maximum of the gain spectrum, they should not lase in a physical situation. These high

frequency contributions are ignored completely by only considering EM fields within the

wavelength range 400 < λ < 1200 nm. In frequency-space, this range is centered around

ka = 2π/λa = 10.5 µm−1, and thus, provides an accurate view of EM behavior in the

random laser.

4.2. Analysis with Linear Gain

Using the method developed in Sec. 1.4.4, the lasing modes with linear gain are now

calculated in the three regimes mentioned earlier: high index contrast, low index contrast,

low index contrast with partial pumping. The benefit of this method is that the lasing

thresholds may be estimated quickly and easily, at least relative to one another. This

method considers gain to be independent of frequency. The results in this section are

discussed in relation to the Maxwell-Bloch simulations in the sections following, where

the properties of the gain medium are given in Table 4.1. As shall be shown, the lasing

thresholds of the individual modes in the presence of frequency-independent linear gain

plays a large role in determining lasing behavior in the presence of gain saturation and

spontaneous emission. However, due to the frequency independence of the linear gain

model used here, the lasing modes do not experience frequency pulling. Thus, the lasing
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Figure 4.3. The frequencies k and lasing thresholds ni of lasing modes
(marked with crosses) with linear gain for a random system with index
contrast ∆n = 0.25. The vertical dashed gray line marks the gain center
frequency ka for the Maxwell-Bloch simulations in the sections following.
In this case, the modes nearest ka have small thresholds (small |ni|) which
are well separated from the thresholds of neighboring modes.

modes studied in this section have slightly different frequencies than the modes studied

in the sections following.

Figure 4.3 reveals the lasing frequencies and thresholds of the random system with

index contrast ∆n = 0.25. The crosses denote frequency k and threshold (imaginary part

of the index of refraction ni) values required to satisfy outgoing-only boundary conditions.

In this case, due to the high index contrast, lasing thresholds are well separated. Note

that the modes nearest the gain center ka (for the Maxwell-Bloch simulations), marked

with a vertical gray line in the figure, have small thresholds (small |ni|) which are well

separated from the thresholds of neighboring modes. It will be shown that these two

modes serve as the two dominant modes when gain saturation and noise are taken into

account. The higher frequency mode at k = 10.8 µm−1 has a smaller threshold than the
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Figure 4.4. The lasing frequencies k and thresholds ni of modes with linear
gain in a weakly scattering random system with uniform gain (crosses) and
nonuniform gain (open diamonds). The vertical dashed gray line marks
the Maxwell-Bloch gain center frequency ka. (a) Lasing modes with uni-
form gain only. The two strongest modes with uniform gain found by the
Maxwell-Bloch simulations in the following section are circled. The circled
modes have lower values of |ni| than the modes nearest ka. (b) Uniform gain
and nonuniform gain results are compared. With lG/L = 1/3, the number
of lasing modes does not reduce, but some lasing modes have much larger
thresholds which effectively increases the frequency spacing of modes with
small thresholds.

lower frequency mode at k = 10.2 µm−1. Two modes at k ≈ 8 µm−1 also have small

lasing thresholds, as expected from the transmission spectrum T (k) in Fig. 4.2.

Figure 4.4 compares lasing frequencies and thresholds with uniform and nonuniform

gain distributions in the system with low index contrast. All lasing modes in this regime

have larger thresholds than modes in the system with high index contrast, as expected.

For uniformly distributed linear gain in Fig. 4.4(a), the lasing modes nearest the gain

center have larger thresholds than their neighboring modes. When gain saturation is taken

into account, the modes with the largest amplitudes correspond to the circled modes, not

the modes closest to the gain center.
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For a nonuniform distribution of linear gain (lG/L = 1/3) [Fig. 4.4(b)], the lasing

thresholds increase dramatically. It was suggested [47] that it is easier to obtain discrete

peaks with partial pumping because there are fewer lasing modes when a system is locally

pumped. This previous numerical study neglected the influence of gain on the real part

of the index of refraction nr. When the gain |ni| approaches the index contrast ∆n, it

has a large effect on the system. These effects shall be studied more in-depth the next

chapter. For now, it is enough to note that the number of lasing modes does not reduce.

Instead, the lasing thresholds of the available lasing modes become increasingly separated.

Consequently, the lasing frequencies also become increasingly separated. This makes it is

easier to obtain discrete lasing peaks with partial pumping.

4.3. From Amplified Spontaneous Emission to Lasing Oscillation

4.3.1. High Index Contrast

We begin by studying the case with a higher index contrast ∆n = 0.25 by employing

the Maxwell-Bloch equations with noise terms included. The localization length ξ of the

system is calculated following the method in Sec. 1.1.2 which gives 〈ξ〉 ≈ 20 µm over

the wavelength range 500 nm ≤ λ ≤ 750 nm. With ξ & L, the system is closer to the

localization regime than the low index contrast case. Figure 4.1 shows a representative

intensity distribution of a mode in this system. It is more concentrated inside the system

than the intensity distribution in the low index contrast case.
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Figure 4.5. Average steady-state intensity 〈I(k)〉 vs. pumping rate Pr for a
random structure with ∆n = 0.25, λa = 600 nm, and ∆λa = 10(∆λ) = 267
nm. The laser transitions from the ASE regime to lasing action.

Figure 4.5 shows the steady-state intensity vs. pumping rate. To avoid numerical

problems mentioned earlier, 〈I〉 is found by a spectral integration

(4.2) 〈I(k)〉 =

∫ ku

kl

|E(k′)|2dk′,

where kl = 2π/1.2 µm−1 and ku = 2π/0.4 µm−1. The system transitions from the ASE

regime to lasing oscillation within this range of pumping rates. Similar to behavior in the

dielectric slab laser [Fig. 3.7], it is unclear where to define the lasing threshold.

Output intensity is observed to reach a fairly steady state at least by a simulation

time of t = 16.6 ps no matter the pumping rate. Spectra are obtained from the range

16.6 ps – 33.2 ps. For every case, the electric field is sampled at the grid point at the

edge of the random system. This point determines the output intensity and is identical

in character to results from sampling the field completely outside the system and before

the absorbing boundary. The three-adjacent-point averaging procedure is used to help

remove the influence of obvious ASE spikes so they are not mistaken for lasing peaks. All
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Figure 4.6. Original steady-state intensity |E(k)|2 compared to the three-
adjacent-point averaged spectrum I3pa(k). Large spikes determined only by
the integration time of the Fourier transformation are significantly reduced.
However, the influence of the spikes is not completely removed.

spectra shown here and henceforth are smoothed at each discrete wavenumber kq via Eq.

3.15. Lasing peaks are wider than these spikes except for very large pumping rates where

lasing action dominates ASE anyways. Thus, this smoothing does not affect lasing peaks.

Figure 4.6 shows the results of this smoothing. Although the large spikes are reduced

somewhat, their influence is not completely removed. Quantities other than the emission

spectrum are needed to help differentiate between ASE and lasing action.

In literature, the definition of the lasing threshold varies greatly [142, 143, 144,

145, 146, 147]. The ASE regime itself exhibits “laser-like” qualities, such as spectral

narrowing. The “fuzziness” [133] of the lasing threshold is well known for large values of

β, where β is the spontaneous emission coefficient. This parameter essentially indicates

how much spontaneous emission is coupled into the lasing modes. Eventually, for β = 1,

the so-called “thresholdless” laser [148] manifests itself and 〈I〉 vs. Pr becomes a straight

line. Smaller values of β push the spontaneous emission regime (small Pr values where



125

spontaneous emission is not yet being amplified) toward zero. In this case, the Pr intercept

of a straight-line fit to 〈I〉 vs. Pr in the LO region gives an accurate lasing threshold.

The lasers studied here are operating far from the thresholdless regime, but the threshold

fuzziness remains.

The Fano-Mandel parameter [149], essentially the intensity variance, was found to

serve as a reliable indicator of the lasing threshold [150]. For most practical applications,

it defines a finite value for the threshold [151, 152]. A direct calculation of the temporal

variance for the random laser is complicated by the numerical problem of unphysical high

frequency components altering the output signal. For this thesis, the transition from ASE

to lasing oscillation is examined and the determination of precise lasing thresholds is left

for future work.

Figure 4.7 shows the steady-state spectra for increasing pumping rates with and with-

out noise. Initially, for Pr = 1.00 in Fig. 4.7(a), there is no lasing for the case without

noise. With noise, there is a broad background peak centered around ka = 10.5 µm−1.

The width of the broad peak is roughly 4–5 µm−1. The atomic linewidth is ∆ka = 4.7

µm−1 meaning the properties of the broad peak are determined by the gain medium.Two

narrow peaks at k ≈ 8 µm−1 are forming to the left and to the right of a gap. Com-

paring with the transmission spectrum T (k) from Fig. 4.2, this gap corresponds to the

transmission dip. Comparing to Fig. 4.3, the narrow peaks correspond directly to lasing

modes with linear gain. Due to the small Thouless number g = 0.5, modes are already

well separated. But particular modes may be even narrower and much farther apart than

the average mode linewidth. Thus, these peaks appear in the emission spectrum in Fig.

4.7(a).
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Figure 4.7. Steady-state intensity spectra I3pa(k) comparisons with noise
(solid black lines) and without noise (dashed red lines and crosses) for a
random system with dielectric layers of ∆n = 0.25. ka = 10.5 µm−1. (a)
No clear lasing peaks, but a broad peak centered around ka compared with
T (k) (blue dotted line). (b) The broad peak narrows for the case with
noise and a single mode begins lasing for the case without noise. (c-g) The
spectra for the case with noise slowly starts to resemble the case without
noise. (g) A third mode is excited for Pr = 2.00.
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With only a slight increase of the pumping rate to Pr = 1.02 [Fig. 4.7(b)], the broad

peak narrows around ka. Without noise, a single lasing peak appears. This lasing peak

corresponds to the mode nearest ka with the smallest threshold in Fig. 4.3. This peak

is a delta function with its “linewidth” merely determined by the integration time of the

Fourier transformation. By carefully adjusting Pr, one may force the laser without noise

into single-mode operation. However, by including noise, there is not single-mode lasing,

as shown below. There is a peak for Pr = 1.02 with noise at the same frequency as the

case without noise. Based on the study of the dielectric slab laser, peaks may form with

linewidths narrowed by ASE. There are clearly other similar peaks at different frequencies

for this pumping rate and for larger pumping rates.

For Pr ≥ 1.04, at least two sharper peaks appear for the case with noise at k = 10.2

µm−1 and k = 10.8 µm−1. These correspond to the two modes nearest ka in Fig. 4.3.

They are at the same frequencies as the lasing peaks without noise. For Pr = 1.04 [Fig.

4.7(c)], there are other sharp peaks, e.g., at k ≈ 8 µm−1, but it is unclear if they are due

to lasing action. This trend continues in Fig. 4.7(d) and (f), but the two central peaks

begin to dominate the others. For Pr = 2.00 [Fig. 4.7(g)], where the total intensity is

just beginning to increase linearly with Pr [Fig. 4.5], there are three narrow peaks. The

third peak at k = 8.6 µm−1 corresponds to the low threshold mode at k = 8.5 µm−1 with

linear gain in Fig. 4.3. The spectrum here greatly resembles the case without noise with

only small differences in amplitude.

Going back to the transition region between ASE and lasing oscillation, the spectrum

for Pr = 1.10, smoothed via iterative 3pa (Eq. 3.21), is shown in Fig. 4.8. The two

central peaks are preserved even after the intense averaging procedure. The small ripples
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Figure 4.8. Steady-state intensity spectrum iteratively smoothed Ii3pa(k)
(black line) for a random system with dielectric layers of ∆n = 0.25 and
Pr = 1.10. The spectrum without noise (red dashed line) is also shown
plotted on a log scale to reveal the smaller peaks. Smoothing allows two
lasing peaks to become visible at k = 10.2 µm−1 and k = 10.8 µm−1. Data
with noise has been smoothed via Eq. 3.21.

neighboring the two central peaks coincide with peaks in the spectrum without noise.

The averaging procedure has broadened the peaks. There are also peaks that survived

the averaging procedure that do not appear in the spectrum without noise. A peak at

k . 8 µm−1 and two peaks (which may be overlapping) at k ≈ 9 µm−1 are clear. These

peaks correspond well with the three modes at similar frequencies in Fig. 4.3. It appears

that a significant effect of noise for small pumping rates is to excite more modes than would

be excited without noise. For higher pumping rates, the spectrum seems to become more

similar to the spectrum without noise. It follows that the extra peaks for small pumping

rates may only be due to ASE. This shall be studied more thoroughly in the ballistic

regime in the next section, where the transition from ASE to clear lasing action occurs

over a larger range of pumping rates.
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4.3.2. Low Index Contrast

As an example of a random 1D system in the ballistic regime, the indices of refraction

of the dielectric layers are n1 = 1.05 and the air gaps n2 = 1. The localization length ξ

is calculated following the method in Sec. 1.1.2 and is nearly constant at 〈ξ〉 ≈ 220 µm

over the wavelength range 500 nm ≤ λ ≤ 750 nm. With ξ ≫ L, the system is deep in the

ballistic regime.

4.3.2.1. Intensity. The average output intensity in the steady-state regime 〈I〉 is ex-

amined as the pumping rate Pr is increased. To avoid numerical problems mentioned

earlier, 〈I〉 is found by a spectral integration via Eq. 4.2. The result in the ballistic

regime (∆n = 0.05) is shown in Fig. 4.9(a) and appears very similar to the result of the

dielectric slab in Fig. 3.7(a). Figure 4.9(a) also compares results with and without noise.

The two cases are nearly identical, except at large pumping rates where the case with

noise exhibits slightly larger intensities. In this region, mode dynamics may be responsi-

ble for altering the output intensity. If modes are anti-correlated, then the total output

intensity may remain relatively constant. However, if they are correlated, there may be

a fluctuation in the output emission. We have found that even a small difference in the

initial condition without noise, such as a different excitation wavelength λ0 or excitation

width δλ0, may significantly influence laser dynamics much later in the simulation. It

follows that including noise may further alter the dynamics. Thus, there may be slight

differences between the cases with and without noise because of the changes caused by

stochasticity.

Similar to the dielectric slab case, as Pr increases from zero, the system reaches the

transparency point at Pr = 1. Increasing Pr further, the lasing threshold is reached
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Figure 4.9. Average steady-state intensity 〈I(k)〉 vs. pumping rate Pr of
the random structure with low index contrast ∆n = 0.05, and λa = 600 nm,
∆λa = 10(∆λ) = 267 nm. (a) Comparison of steady-state intensity behav-
ior with noise (black points) and without noise (red line). (b) 〈I(k)〉 with
noise is plotted on a log10 scale to easily examine the regions of operation
(SE, ASE, LO). Without noise, only the LO region is calculable. Linear
fits to the intensity are shown in the SE and LO regions. Vertical black
lines delineate where the line fits are taken. Slopes ≈ 1 of lines fitting the
intensity show that 〈I(k)〉 ∝ Pr. In the ASE region, the intensity increases
with a larger-than-linear rate as (Pr)

p (p > 1).

and intensity increases linearly. However, we shall now investigate the region of small

pumping rates close to the transparency point. Figure 4.9(b) shows that 〈I(k)〉 vs. Pr may

be separated into 3 distinct regions: spontaneous emission (SE), amplified spontaneous

emission (ASE), and lasing oscillation (LO). Far below the transparency point, there is no

population inversion. The only emission is spontaneous emission so the output intensity

grows linearly with Pr. As the pumping rate increases, so does the population inversion,

and the spontaneous emission becomes amplified. However, the gain (even when ρ3 > 0)

is less than the leakage loss rate, so there is no lasing oscillation. As seen in Fig. 4.9(b)

for Pr ≃ 1, the intensity increases as (Pr)
p with p > 1. This phenomenon of ASE may

often be mistaken for lasing due to output properties resembling the output properties
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of a laser, such as a drastic linewidth reduction (as seen for the dielectric slab laser in

the previous chapter). Usually, in the case of ASE, the output is mostly influenced by

the gain medium and not the laser cavity (as indicated by systems in which there is

no laser cavity [153]). Some cite this as a distinguishing factor [154] between ASE and

lasing oscillation. However, from our studies in the previous chapter, we observed spectral

narrowing around the modal linewidths due to ASE. Thus, ASE is also influenced by the

laser cavity. Furthermore, it was shown [35] that one aspect of ASE, the statistics of ASE

spikes are markedly different than those of lasing peaks. True lasing oscillation manifests

in the last region far above the transparency point. Here, there is a enough population

inversion to sustain lasing oscillation and the steady-state intensity returns to a linear

increase with Pr. The studies in this chapter focus on the transition region between ASE

and LO.

To ensure these results are not limited to the particular configuration considered here,

simulations with another random seed (to initialize the Γi noise terms) and another re-

alization of a random structure (with the same properties) were done. The results were

nearly identical. Slight differences only arise due to stochasticity.

4.3.2.2. Spectra. Intensities in the previous section were found by integrating the in-

tensity spectra. The spectra themselves shall be examined here. Intensities behave very

similarly for the following cases in that there is always 3 regions of operation (SE, ASE,

LO).The steady-state spectra, however, reveal more differences.

First, the spectra for the cases without noise are compared to the passive case. The

quasi modes of the passive system were calculated using the transfer matrix method (see

Sec. 1.4.4). Figure 4.10 shows the result just above the lasing threshold. For Pr = 1.06,
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there is single mode lasing with the frequency of the lasing mode pulled toward the maxi-

mum of the gain spectrum at ka = 10.5 µm−1. When gain is introduced, the modes acquire

a frequency-dependent phase shift. To understand this so-called frequency pulling, con-

sider a dielectric slab with index n for simplicity. The frequencies of the cold cavity modes

km′ are given by Eq. 1.53. A phase shift φL(k) caused by the gain medium, determined

by the Lorentzian lineshape, must be added [155] yielding a nonlinear equation for the

lasing frequency km

km + φL(k) =km′

km +
km − ka

∆ka
ℓ−1
g (km) =km′ ,(4.3)

where ℓg(k) is the gain length discussed in Sec. 1.1.2 and depends on Pr as well. If we

assume km − ka is small, this term can be replaced with km′ − ka resulting in a lasing

frequency

(4.4) km ≈ km′ − km′ − ka

∆ka
ℓ−1
g (km′).

If km′ > ka, km is reduced from km′ . If km′ < ka, km is increased from km′. Thus, the

lasing mode frequencies are pulled toward ka. This effect is seen clearly for Pr = 1.08

[Fig. 4.10(b)] where all lasing frequencies are pulled toward ka.

Concerning the spectra with noise, the three-adjacent-point averaging procedure is

used once again to help reduce the influence of ASE spikes. A big difference between

the experimental data of Wu and Cao [35, 36] and the numerical data presented here,

is the spectral spacing and width of lasing peaks. Here, especially far into the ballistic
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Figure 4.10. Steady-state intensity spectra |E(k)|2 without noise (red
lines). Vertical dashed lines mark frequency locations of the quasi modes of
the passive random system. The vertical dashed gray line marks the gain
frequency ka. (a) Single-mode lasing occurs for Pr = 1.06 (just above the
lasing threshold). (b) Multimode lasing occurs for Pr = 1.08, with lasing
frequencies pulled toward ka in all cases.

regime, we are able to study the lasing peaks as they form with increasing Pr. During

this formation, the peaks are quite broad (1–10 nm), compared to the narrow ASE spikes

(0.06–0.08 nm). Thus, even after executing the three-adjacent-point averaging procedure

above, the ASE spikes remain as sharp modulations. This makes it somewhat difficult to

clearly determine the lasing peaks, especially if they are close together. On average, the

Thouless number is 1, but particular lasing modes may be much closer together than the

average lasing linewidth. If an iterative 3pa procedure (Eq. 3.21) is implemented, it is

possible to average out the ASE spikes enough to see the formation of peaks. However,

choosing the number of iterations is extremely subjective. For this random laser with

a relatively large Thouless number, the frequencies of lasing modes are not known as

precisely as in the dielectric slab laser. Too few iterations results in some remnants of the
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ASE spikes which could be mistaken for lasing peaks. Too many iterations can result in

averaging out the lasing peaks themselves.

Output intensity is observed to reach a fairly steady state at least by a simulation time

of t = 16.6 ps no matter the pumping rate. This was proven by comparing 〈I(k)〉 taken

from Fourier transformations over different temporal ranges up to t = 267 ps. Spectra

obtained from the range 16.6 ps – 33.2 ps were found to be sufficient.

Figure 4.11 shows the steady-state spectra with noise I3pa(k) for increasing pumping

rates. Similar to the data shown in Fig. 4.7, a broad ASE peak is revealed in Fig.

4.11. The spectrum is fairly flat for Pr < 1, while for Pr = 1.00, the broad peak is

centered around ka = 10.5 µm−1 with a width roughly equal to the atomic linewidth

∆ka = 4.7 µm−1. Different from Fig. 4.7, the broad peak narrows in Figs. 4.11(a-d)

without smaller peaks rising up. The difference between the data with low index contrast

and the high index contrast is very similar experimental results [156]. By increasing the

density of particles, Cao et al. observed the transition from ASE to clear lasing action.

Increasing the index contrast ∆n is analogous to increasing the density of scattering

particles. However, a large enough pumping rate will stimulate lasing action even with

low index contrast.

Without noise, a single lasing peak appears for Pr = 1.06 [Fig. 4.10(a)]. There is

clearly not single-mode lasing in the case with noise for Pr = 1.06 [Fig. 4.11(f)]. There is

a discernible peak at the same frequency as the lasing mode without noise, but this is due

to ASE as suggested by the intensity behavior in Fig. 4.9 (modal intensities themselves will

be compared below). Without noise, multimode lasing occurs for Pr = 1.08 [Fig. 4.10(b)].
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Figure 4.11. Steady-state intensity spectra I3pa(k) in the ASE region. (a)
The spectrum is fairly flat for Pr < 1. (b) A broad peak begins to form
for Pr = 1 and (c-d) the peak narrows as Pr increases further. (f) Due to
ASE, narrower peaks begin forming amidst the broad background. Without
noise, Pr = 1.06 yields single-mode lasing [Fig. 4.10(a)]. (g) More small
peaks due to ASE become clear, where, without noise (dashed red lines and
crosses), multi-mode lasing clearly occurs.
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With noise [Fig. 4.11(g)], more small ASE peaks appear corresponding to the frequencies

of the case without noise (more discernible when the two spectra are overlayed).

Figure 4.12(a-d) shows that the ASE peaks become sharper and well separated for

larger pumping rates. By Pr = 1.74 [Fig. 4.12(f)] and Pr = 2.00 [Fig. 4.12(g)], there are

six significant peaks. These six frequencies have a one-to-one correspondence with the

quasi modes of the passive system and the linewidths are sufficiently narrow to separate

the modes. This behavior is similar to that found in the dielectric slab. The big difference

is that this random laser is operating in the multimode regime due to the leakiness of this

random system.

The spectrum for Pr = 2.00 in Fig. 4.12(g) is iteratively smoothed via Eq. 3.21.

The result is compared to the spectrum without noise in Fig. 4.13. Ii3pa(k) reveals six

major peaks, enumerated 1–6, not destroyed by the smoothing process. In Fig. 4.13,

all peaks except peak 1, coincide with significant peaks in the spectrum without noise

(peak 1 corresponds to a very small peak not visible). Without noise, mode 5 reached

the lasing threshold first at Pr = 1.06. The remaining modes soon followed at Pr = 1.08.

Though precise thresholds are unknown with noise, they are certainly larger than the case

without noise. So as expected, noise has increased the lasing threshold of modes. All six

frequencies can be traced back into the ASE regime to at least Pr = 1.22. Decreasing the

pumping rate broadens the linewidth of each of the six peaks. Thus, Figs. 4.11 and 4.12

are a clear and explicit revelation of the general behavior of ASE for a random system in

the ballistic regime (in 1D).

Note that the two modes closest to ka in Fig. 4.4 appear to be “combined” in Fig.

4.12. Iterative smoothing does destroy any individual character these two modes might
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Figure 4.12. Steady-state intensity spectra I3pa(k) for increasing Pr as las-
ing with resonant feedback finally manifests. (a-d) ASE causes narrowing
of modal linewidths. (f-g) Due to the fuzziness of the lasing threshold, it is
difficult to determine the exact threshold for lasing action. But the narrow
peaks in (g) coincide with the lasing peaks without noise (dashed red lines
and crosses).
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Figure 4.13. Steady-state intensity spectrum iteratively averaged Ii3pa(k)
compared to the spectrum without noise for a random system with dielectric
layers of ∆n = 0.05 and Pr = 2.00. The major peaks are enumerated 1–6.
All peaks but peak 1 have a corresponding peak in the spectrum without
noise, as expected from Fig. 4.15(d).

have, but as shown in Fig. 4.13, only a “composite” peak appears (labeled peak 3). A

likely explanation is that a combination of frequency pulling and linewidth broadening

due to noise brought these two modes so close together that they appear to be merged.

This may also be a result of time averaging, which shall be discussed later.

As the pumping rate increases drastically in Fig. 4.14, the linewidths decrease dras-

tically. Figures 4.14(a) and (b) are perhaps most similar to the experimental results

presented in [36]. According to experiments, the lasing peaks have a larger spectral

width than the ASE spikes, but only twice as large. As we have observed, however, ASE

also generates wide peaks around modal frequencies. Thus, in this range of pumping

rates, using the smoothed spectrum I3pa(k) does not necessarily make it straightforward

to distinguish ASE from lasing action. Only when the spectra are compared with other

quantities, such as mode statistics or mode intensities (as will be shown below), can the

peaks in this regime be confidently contributed to lasing action.
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Figure 4.14. Steady-state intensity spectra I3pa(k) for large Pr with clear
lasing action. (a-b) There is enough spectral resolution that linewidths may
be estimated fairly accurately. (c) There is enough data above the FWHM
of the lasing peaks to obtain a rough estimate of the linewidth, but this
should not be quantitatively compared to linewidths obtained with smaller
Pr. (d) The two largest lasing peaks have a linewidth equal to or smaller
than the spectral resolution.

Once the pumping rate has been increased enough, even the lasing peak width becomes

narrower than the spectral resolution, just like ASE spikes. The data for Pr = 12.59 [Fig.

4.14(c)] provides a rough estimate of the linewidth, but the spectral resolution is too poor

once Pr = 19.95 [Fig.4.14(d)]. Furthermore, for these large pumping rates, the amplitude

of the peaks (relative to neighboring peaks) in the center of the spectrum reduce. This
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is most likely due to lasing mode interaction due to spatial hole burning [45]. Nonlinear

interaction increases for larger pumping rates and the modes which lase first tend to

dominate other modes.

The spectra with noise are directly compared to the spectra without noise in Fig. 4.15.

From this comparison, it is easier to distinguish the ASE peak for Pr = 1.06 [Fig. 4.15(a)]

in the case with noise. The width of this ASE peak is & 0.5 µm−1. It is consistently

present for larger pumping rates and the linewidth decreases monotonically until lasing

action begins.

For Pr = 1.08 [Fig. 4.15(b)], there are multiple lasing peaks for the case without noise.

There is some correspondence to ASE peaks in the spectrum with noise. For Pr = 1.22

[Fig. 4.15(c)], there is a large peak in the case with noise at k ≈ 10.3 µm−1. There is a

corresponding peak in the spectrum without noise, but that peak is orders of magnitude

smaller than the neighboring peaks.

For Pr = 3.20 [Fig. 4.15(f)] and Pr = 5.00 [Fig. 4.15(g)], the relative amplitude

of peak 1 with noise decreases while the amplitude of the peak without noise increases.

The landscape of population inversion is different without noise. So although the effects

of noise on the population inversion decrease with an increased pumping rate, it is not

surprising the amplitudes of modes is different in the two cases.

4.3.2.3. Linewidths. In this section, spectral widths shall be compared from the sim-

ulations in the ballistic regime. The three widths compared are: (i) width of the broad

background peak δλB (associated with ASE for small Pr), (ii) linewidth of mode 2 δλ2,

and (iii) linewidth of mode 5 δλ5. Modes are enumerated in Fig. 4.13. All widths are

calculated using the method developed in Sec. 3.3.2.
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Figure 4.15. Steady-state intensity spectra I3pa(k) comparisons with noise
(solid black lines) and without noise (dashed red lines and crosses) for a
random system with ∆n = 0.05. (a) The frequency of an ASE peak in
the spectrum with noise (mode 5) corresponds to the single-mode lasing
frequency without noise. (b) ASE peaks become more evident as indicated
by Ii3pa(k) (dotted blue line). (c-f) Spectra with and without noise become
more similar. (g) Mode amplitudes are different with and without noise.
This is not surprising due to the effect of noise on the population inversion.
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Figure 4.16. Mode frequencies vs. pumping rate for the random structure
with index contrast ∆n = 0.05 and ka = 10.5 µm−1. For small pumping
rates the center frequencies of modes are unclear due to noise. As peaks
emerge from the background spectrum, the frequencies do not shift much
as the pumping rate increases over this small range.

The calculation of δλB is done by fixing the wavelength range to 400 nm < λ < 1200

nm. This is the range over which the spectral integration is carried out via Eq. 3.17

to obtain the Lorentz error function LEF (k). The center frequency k0, usually a fitting

parameter, is fixed. In the ASE region, the center of this broad peak should have a

maximum at ka. As lasing oscillations begin, we wish to observe the narrowing of the

background spectrum around ka in the range 400 nm < λ < 1200 nm. Thus, even after

lasing oscillation begins, k0 is fixed at ka and not adjusted during fitting. Because the

background is not a constant value, the fitting equation is Eq. 3.17.

The calculations of δλ2 and δλ5 are done by choosing a frequency range based on

the smoothed spectrum Ii3pa(k) in Fig. 4.13. The troughs on either side of the peaks

of modes 2 and 5 are chosen as the low and high frequency limits even for values of Pr

different from that in Fig. 4.13. From the progression of the spectra with increasing Pr,
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the frequencies at the maxima of these two modes do not change significantly, so this

frequency range should be a valid choice. This is evidenced by frequency behavior with

respect to pumping rate shown in Fig. 4.16. For each Pr value, the peak maximum of

each mode is located by finding the maximum of Ii3pa(k) within that frequency range.

This value serves as the initial guess for the k0 fitting parameter, which is then allowed to

be adjusted during fitting [136], along with Al and s, to obtain the best fit. The method

suggested in Sec. 3.3.2, of using a background constant as a fitting parameter over a

narrower range of frequencies, was experimented with. However, the frequency range was

too restrictive containing little data, resulting in poor fits which even diverged for some

values of Pr. Thus, the entire frequency range from trough to trough is considered for all

fits and the fitting equation remains Eq. 3.17. For pumping rates near 1.00 in Fig. 4.16,

the center frequencies of modes are unclear due to noise. Note that even for these small

pumping rates, mode frequencies have already been pulled toward ka = 10.5 µm−1 by

the gain medium. As the pumping rate increases and peaks emerge from the background

spectrum, the frequencies do not shift much. According to Eq. 4.3, this indicates a fairly

weak dependence of ℓg on Pr values within this range.

Figure 4.9 shows that significant change in 〈I(k)〉 occurs for 1 < Pr < 10. Figure 4.17

expands this range and also separates the total intensity into modal intensities through

spectral integrations over the modes alone. Note that except for mode 1, perhaps, all

modes exhibit very similar behavior. Thus, they all appear to reach their lasing thresholds

at approximately the same pumping rate, whatever that may be. Without noise, modes

reached their respective lasing thresholds for roughly the same pumping rate Pr = 1.08

[Fig. 4.10(b)]. Thus, it is not surprising that the modes begin lasing near the same



144

1016

1017

1018

1019

1020

1021

 1  2  4  6  8  10

<
I>

 (
ar

b.
 u

ni
ts

)

Pr

<I>
<I1>
<I2>
<I3>
<I4>
<I5>
<I6>

Figure 4.17. Average steady-state intensity 〈I(k)〉 and modal intensities
〈Ij〉 vs. pumping rate Pr of the weakly scattering random structure with
∆n = 0.05, λa = 600 nm and ∆λa = 10(∆λ) = 267 nm. In the ASE region,
Pr & 1, intensity increases with a super-linear rate while in the LO region,
intensity returns to a linear increase with Pr.

pumping rate with noise. Furthermore, it may be suggested that noise has blurred the

thresholds of all modes somewhat, putting them even closer to each other.

In any case, the resulting spectral widths are shown in Fig. 4.18 along with corre-

sponding steady-state intensities. As Pr increases from 0.98 to 1.22 in Fig. 4.18(a), δλB

decreases by an order of magnitude. This is consistent with experiments [156] which

show a decrease by a factor of roughly four. The precise factor is determined by the gain

material. The mechanism behind this drastic narrowing was discussed in Sec. 1.2.1. For

1.22 ≤ Pr ≤ 1.74, δλB remains fairly constant with the absolute minimum at Pr = 1.56.

From Fig. 4.12, this is the pumping region where peaks begin to clearly emerge out of

the broad background. The individual peak amplitudes increase, but the peak amplitudes

relative to each other stay relatively the same. Thus, δλB stays relatively constant. For
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Figure 4.18. Spectral width of (a) the broad peak δλB, (b) linewidths δλ2

and δλ5 of lasing modes 2 and 5 [see Fig. 4.13(g) for enumeration] vs. Pr.
δλB decreases dramatically by an order of magnitude after transparency is
reached at Pr = 1. The decrease of δλB slows as 〈I(k)〉 leaves the ASE
region and moves into the LO region. δλB flattens by Pr = 1.22, reaches
its minimum value at Pr = 1.56, and slowly increases for larger Pr. This
increase is due to modes further away from ka beginning to lase [e.g., see Fig.
4.14]. (b) The lasing modes themselves have a narrower linewidth which
also decreases dramatically for increasing Pr. The linewidth of the dominant
lasing mode δλ5 decreases the most quickly of all calculated lasing modes.
Both lasing mode linewidths continue to reduce until spectral resolution is
reached for Pr > 5.00.

Pr ≥ 2.00, the outlying modes begin to dominate the lasing modes nearest ka. Thus, δλB

increases.

The mode linewidths δλ2 and δλ5 in Fig. 4.18(b) are ill-defined for 1 ≤ Pr < 1.06.

This is expected due to the large mode overlap for small Pr. Thus, the linewidths fluctuate

and may not be considered as genuine linewidths. As Pr increases from 1.06 to 2.00, the

linewidths decrease by an order of magnitude. Most of this narrowing appears to be due

to ASE. The peak of lasing mode 5 narrows the most dramatically. This is consistent

with all previous figures which show mode 5 to have the largest amplitude. Though all

the lasing thresholds are very close and noise introduces fuzziness to the thresholds, mode
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5 may technically lase first (as in the noiseless case). As Pr increases past 2.00, the rate

of the linewidths’ decrease slows. However, the rate of the modal intensity’s increase also

slows. Flattening of δλ2 and δλ5 occurs in the LO regime. However, as discussed below,

the last three data points should be ignored due to poor spectral resolution. Physically,

the gain will eventually be saturated for large values of Pr and the output intensity and

linewidths will genuinely flatten with respect to Pr.

Gordon et al. calculated [11] the spectral extent of the energy distribution, or

linewidth, of a nearly monochromatic beam emitted from a maser. By analogy, Schawlow

and Townes calculated [12] the linewidth of a laser mode, considering that spontaneous

emission broadens the peak. Though the modes in this random laser are not truly lasing

until larger intensities are reached, the width of the peaks are still determined by sponta-

neous emission. Thus, we assume the Schawlow-Townes prediction of linewidth behavior

to still be accurate. They found the linewidth to depend on frequency, the width of the

corresponding cold cavity resonance, and the field power. In this thesis, the linewidth shall

not be quantitatively compared with the Schawlow-Townes prediction (which actually re-

quires correction [157, 158]), but the dependence on power (or equivalently, intensity) is

easily obtained. The behavior of linewidth with respect to intensity is predicted to follow

δλ ∝ 〈I〉−1.

Figure 4.19 shows δλ2 and δλ5 vs. the steady-state intensities of mode 2 〈I2(k)〉 and

mode 5 〈I5(k)〉. A linear fit of the data on a log-log scale reveals if the linewidth does

decay as a power law and, if so, what the exponent of the decay is. According to the

relation of linewidth and intensity above, the slope is expected is expected to be −1.



147

(a) (b)

-1

 0

 1

 2

 3

 17  18  19  20  21
 1

 10

 100

lo
g 1

0 
[δ

λ 5
]

P
r

log10 [<I>5]

slope = -0.97 +/- 4.7%

-1

 0

 1

 2

 3

 17  18  19  20  21
 1

 10

 100

lo
g 1

0 
[δ

λ 2
]

P
r

log10 [<I>2]

slope = -0.71 +/- 6.2%

Figure 4.19. Linewidths (a) δλ5 and (b) δλ2 of lasing modes 5 and 2 and
pumping rate Pr (green asterisks) vs. the steady-state modal intensities
〈I5(k)〉 and 〈I2(k)〉 for a random system with ∆n = 0.05. (a) The slope
≈ −1 of the fit, means that δλ5 ∝ 〈I5(k)〉−1, the linewidth trend found by
Schawlow and Townes. Vertical black lines mark the fitting range. (b) The
slope of δλ2 is shallower than the slope of δλ5 (> −1).

The smallest value of 〈I5(k)〉 for the fitting range for δλ5 was determined by the

pumping rate at which this mode began to lase without noise (Pr = 1.06). This pumping

rate is also when separate ASE peaks emerge. The largest value of 〈I5(k)〉 for the fitting

range was determined by the pumping rate at which an accurate estimate of the linewidth

is no longer possible due to spectral resolution [see Fig. 4.14]. Data for Pr > 5.00, or the

last three data points, are neglected.

The fit reveals δλ5 follows the Schawlow-Townes linewidth trend almost exactly. The

slope is -0.97 with an asymptotic standard error of 4.7%. The trend of δλ2, however,

is shallower than the predicted Schawlow-Townes values with a slope of -0.71 and an

error of 6.2%. This is not too surprising, as multimode operation is known to affect

lasing linewidths [159, 160]. A more quantitative investigation shall be carried out in

the future.
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4.3.3. Low Index Contrast–Nonuniform Gain Distribution

As indicated by recent experiments [30, 33] and explored through numerical studies [47],

it is easier to obtain discrete lasing peaks by locally pumping the system. If the unpumped

region of gain consists of three-level or four-level atoms in their ground state, photons

leaving the pumped region will not be absorbed or stimulate radiation for the most part.

Thus, partial pumping can be modeled as a spatially nonuniform gain distribution. To

simulate a spatially nonuniform gain region with the Maxwell-Bloch equations, two-level

atoms are placed only in the region 0 ≤ x ≤ lG, where x = 0 is the left edge of the

structure and x = lG specifies the right edge of the gain region.

The number of lasing peaks which exist for a system with nonuniform gain shall be

compared to the number of lasing peaks for the uniform gain case studied in the previous

section. From our observations, noise only seems to increase lasing thresholds. The

precise factor of increase is currently unavailable, unfortunately. However, ASE was seen

to impart energy to modes irrespective of lasing thresholds [e.g., see Fig. 4.11(g)]. This

may give some advantage to modes which would not lase without noise and decrease their

relative (to neighboring modes) lasing thresholds. Thus, the threshold increase factor

may not be the same for all modes. If noise increases smaller thresholds more than larger

thresholds, it could result in more modes lasing simultaneously. This would effectively

remove the advantage due to partial pumping. Thus, it is important to check the number

of modes with partial pumping when noise is included.

Figure 4.20 compares spectra with and without noise for lG = 2140 nm ≈ L/3 as Pr

increases. With a smaller gain region, the thresholds of lasing modes increase as expected

[161, 32]. The first mode begins lasing at Pr = 1.10 [4.20(a)], whereas the first mode
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Figure 4.20. Steady-state intensity spectra I3pa(k) comparisons with noise
(solid black lines) and without noise (dashed red lines and crosses). (a)
With the aid of the spectrum without noise, a small peak in the spectrum
with noise (at k . 10.5 µm−1) can be detected. (b) The narrow peaks now
become more evident at this larger pumping rate for the case with noise.
(c-g) As Pr increases further, the spectra with noise more closely resembles
that without noise The number of modes is less than the case with uniform
gain and the modes lasing are more separated in frequency.
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began lasing at Pr = 1.06 for a spatially uniform gain region. Thresholds of other lasing

modes also increase, as evidenced by the single-mode lasing behavior until Pr = 1.16

[4.20(b)]. This single mode corresponds to the lasing mode nearest ka for lG/L = 1/3 in

Fig. 4.4(b). With larger values of Pr, it is again easier to distinguish the narrow peaks.

For Pr = 1.22 [4.20(c)], there are two major peaks without noise, but four major peaks

with noise. For Pr = 2.00 [4.20(d)], the four major peaks with noise remain, and a third

peak arises in the spectrum without noise. The four major peaks become stronger as Pr

increases to 3.20 [4.20(f)] and then 5.00 [4.20(g)]. The peak frequencies correspond well to

the four central (around ka) lasing modes found via linear gain shown in Fig. 4.4(b). Since

the first lasing threshold is reached for similar values in the uniform and nonuniform gain

cases (Pr = 1.06 and Pr = 1.10), we may compare spectra at the same pumping rates for

both cases. There are more peaks with noise than without noise in the nonuniform gain

case. However, for Pr = 5.00, the number of lasing peaks for a nonuniform gain region is

smaller (four) than for a uniform gain region (five) and the frequencies are more separated.

Thus, even with noise, the modes with very large lasing thresholds do not appear for the

pumping rates considered here and the remaining modes are well separated in frequency.

The precise influence, if any, of the large threshold modes should be ascertained in future

studies.

4.4. Discussion

For three different cases (Secs. 4.3.1, 4.3.2, and 4.3.3), it has been observed that

lasing thresholds are higher with noise than without noise. Changes due to noise near the

localization regime are less significant than changes due to noise in the ballistic regime.
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The higher index contrast traps light more efficiently resulting in a lower lasing threshold,

weakening the influence of ASE. Thus, there is less of a transition region between ASE

and LO and the thresholds do not shift as much. In the ballistic regime, with uniform

or nonuniform gain, the thresholds experience more increase due to noise. Otherwise, the

behavior is similar to the noiseless case.

Before discussing the results of this chapter, other influences on lasing behavior need

to be addressed briefly. Dynamical processes [162] and/or noise may affect the output

intensity so that a true steady state is never reached (e.g., [163]). If mode amplitudes

are small enough, noise may stimulate random switching between the modes in time

[164, 165]. It is conceivable here, that noise may cause mode switching and that different

modes lase at different times. If the Fourier transformation is taken over a longer time than

the time between mode switches, all peaks will appear in the spectrum. An estimate of

the time one of the lasing modes spends “turned off” can be calculated using first-passage-

time analysis [166]. Knowing this information would allow us to precisely determine the

time scale on which to compare different Fourier transformations. However, obtaining

this estimate requires mode coupling information which is not readily available in our

model. Nevertheless, two spectra taken at subsequent time intervals as an example and

are compared in Fig. 4.21. These spectra correspond to the system studied in Sec. 4.3.2.

The intervals were kept as short as possible (keeping an adequate spectral resolution) to

increase the likelihood of finding spectra with different landscapes.

There are some differences between the two spectra in Fig. 4.21. Other than small

quantitative changes, the outlying modes, 1, 2, 5, and 6 are qualitatively the same for

both intervals. This is to be expected and verifies that noise does indeed quantitatively



152

0

 2⋅1021

 4⋅1021

 6⋅1021

 8⋅1021

 1⋅1022

9 10 11 12

I 3
pa

(k
) 

(a
rb

. u
ni

ts
)

k (µm-1)

31.7 ps -- 32.5 ps
32.5 ps -- 33.3 ps

Figure 4.21. Intensity spectra |E(k)|2 taken from two subsequent time
intervals: 31.7 ps – 32.5 ps (red crosses) and 32.5 ps – 33.3 ps (blue circles).
These times are well after a “steady” state has been reached at t = 16.7 ps.
A uniform gain region is used in this system which is in the ballistic regime.

influence dynamics of modes with large amplitudes. However, the qualitative character

of the two spectra is different for the two central peaks with the lowest amplitudes. From

the various simulations without noise (passive system, linear gain system, nonlinear gain

system) we know there are two modes on either side of ka = 10.5 µm−1. In all previous

spectra with noise, a single “combined” peak (usually labeled peak 3) appeared. Figure

4.21 suggests the amplitude of these modes is changing in time. An explanation for the

temporal change of peak 4 is currently lacking. Dynamics and noise result in complicated

behavior requiring further in-depth studies. We neglect these temporal fluctuations in

this thesis by performing integrations over a much longer time.

In Sec. 3.3, noise is observed to increase the true lasing threshold of a single-mode

dielectric slab laser. The same effect was seen in random lasers. In the ballistic regime,

the first threshold was reached at Pr = 1.06. With noise, the true lasing threshold is closer

to Pr = 2.00, though not precisely determined. Qualitatively, it is certain that noise does
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affect the lasing thresholds of modes. Even if different modes are lasing at different times,

they are lasing nonetheless. Without noise, thresholds are reached for much smaller values

of Pr. To be more precise, with noise, the lasing threshold of modes is increased, but only

for modes that have small lasing thresholds without noise. The change for modes that had

large lasing thresholds without noise remains to be seen. For example, the large threshold

modes for lG/L = 1/3 in Fig. 4.4(b) have not yet been observed in simulations with noise

included. Noise may actually decrease these lasing thresholds, but this was not observed

for the range of pumping rates considered.

Because the thresholds of modes change when considering noise, the number of lasing

modes for a particular pumping rate changes. For small pumping rates, the number of true

lasing modes decreases. For large pumping rates, the number of true lasing modes either

remains the same or increases (depending on future studies into large threshold modes).

For intermediate pumping rates, the fuzziness of the lasing threshold makes it difficult

to determine the number of lasing modes with noise. As previously mentioned, future

studies into the intensity variance should determine lasing thresholds more precisely and

help to answer this question.

Concerning partial pumping effects, the lasing thresholds of the available lasing modes

become increasingly separated when considering partial pumping. Consequently, the las-

ing frequencies also become increasingly separated. Thus, even with noise for the range

of pumping rates examined here, the modes with very large lasing thresholds are ignored

and the remaining modes are well separated in frequency. This makes it is easier to obtain

discrete lasing peaks with partial pumping.
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CHAPTER 5

Spatially Nonuniform Gain Distributions

The previous chapter showed that spatially nonuniform distributions of gain do appear

to facilitate the observation of discrete lasing peaks from random lasers. In this chapter,

we further explore the consequences of nonuniform gain distributions for open complex

systems.

In Section 5.1, numerical methods used to study the lasing modes of 1D random

dielectric structures are described. A scheme for decomposing the lasing modes in terms

of quasi modes is presented. A method to separate traveling wave and standing wave

components from the total electric field is introduced. Results of simulations of passive

random systems and random lasers with uniform gain are discussed in Section 5.2. Modal

behavior with reduction of the spatial gain region is studied in Section 5.3. Mode mixing

results are presented in Section 5.4 and the disappearance and appearance of lasing modes

is discussed in Section 5.5.

5.1. Numerical Methods

A numerical method based on the transfer matrix (see Sec. 1.4.4) is used to calculate

both the quasi modes and the lasing modes in a random structure. Recall that the

boundary conditions for outgoing fields only require M22 = 0. For structures without

gain, wavevectors must be complex in order to satisfy the boundary conditions. The

field inside the structure is represented by p(x) exp[in(x)k̃x] + q(x) exp[−in(x)k̃x], where
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k̃ = k + iki is the complex wavevector and x is the spatial coordinate. For outgoing only

boundary conditions (M22 = 0), ki < 0. The resulting field distributions associated with

the solutions for these boundary conditions are the quasi modes of the passive system.

Linear gain is simulated by appending an imaginary part to the dielectric function

ǫ(x) = ǫr(x) + iǫi(x), where ǫr(x) = n2(x). This approximation is only valid at or

below threshold [167]. In Sec. 1.4.4.2, the complex index of refraction is calculated as

ñ(x) =
√

ǫ(x) = nr(x) + ini, where ni < 0. We consider ni to be constant everywhere

within the random system. This yields a gain length lg = 1/ki = 1/nik (k = 2π/λ is the

vacuum wavenumber of a lasing mode) which is the same in the dielectric layers and the

air gaps. The real part of the index of refraction is modified by the imaginary part as

nr(x) =
√

n2(x) + n2
i . A real wavevector k = 2π/λ describes the lasing frequency. The

field inside the structure is now represented by p(x) exp[iñ(x)kx] + q(x) exp[−iñ(x)kx].

The frequencies and thresholds are located by determining which values of k and ni,

respectively, satisfy M22 = 0.

Nonuniform gain is introduced through an envelope function fE(x) multiplying ni.

The envelope considered here is the step function fE(x) = H(−x + lG), where x = 0 is

the left edge of the random structure and x = lG is the location of the right edge of the

gain region. lG may be chosen as any value between 0 and L.

The solutions of the system are given by the points at which the complex transfer

matrix element M22 = 0. Where Re[M22] = 0 or Im[M22] = 0, “zero lines” are formed in

the plane of either complex k̃ (passive case) or (k, ni) (active case). The crossing of a real

and imaginary zero line results in M22 = 0 at that location, thus revealing a solution. We
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visualize these zero lines by plotting |log10 ReM22| and |log10 ImM22| and using various

image processing techniques to enhance the contrast.

The solutions are pinpointed more precisely by using the Secant method. Locations of

minima of |M22|2 and a random value located closely to these minima locations are used as

the first two inputs to the Secant method. Once a solution converges or |M22| < 10−12, a

solution is considered found. This method has proved extremely adept at finding genuine

solutions when suitable initial guesses are provided.

Verification of these solutions is provided by the phase of M22, calculated as θ =

atan2(ImM22,ReM22). Locations of vanishing M22 give rise to phase singularities since

both the real and imaginary parts of M22 vanish. The phase change around a path

surrounding a singularity in units of 2π is referred to as topological charge [168, 169].

In the cases studied here, the charge is +1 for phase increasing in the clockwise direction

and −1 for phase increasing in the counterclockwise direction.

5.1.1. Biorthogonal Decomposition of Lasing Modes

Once a solution is found, the complex spatial field distribution may be calculated. Quasi

modes ψ(x) are calculated in the passive case and lasing modes Ψ(x) are calculated in

the active case. In order to determine whether or not mode mixing occurs (and if so, to

what degree) in the case of nonuniform gain, the lasing modes are decomposed in terms of

the quasi modes of the passive system. It was found [170, 171] that any spatial function

defined inside an open system of length L [we consider the lasing modes Ψ(x) here] can



157

be expressed as

(5.1) Ψ(x) =
∑

m

amψm(x),

where ψm(x) are a set of quasi modes characterized by the complex wavevectors k̃m. The

coefficients am are calculated by

am =i

∫ L

0

[

Ψ(x)ψ̂m(x) + Ψ̂(x)ψm(x)
]

dx

+ i [Ψ(0)ψm(0) + Ψ(L)ψm(L)] ,(5.2)

where

(5.3a) ψ̂m(x) = −ik̃mn
2(x)ψm(x)

(5.3b) Ψ̂(x) = −ik [nr(x) + inifE(x)]2 Ψ(x).

The normalization condition is

1 =i

∫ L

0

2ψ(x)ψ̂(x)dx+ i
[

ψ2(0) + ψ2(L)
]

=i

∫ L

0

2Ψ(x)Ψ̂(x)dx+ i
[

Ψ2(0) + Ψ2(L)
]

.(5.4)

An advantage of this decomposition method is that a calculation over an infinite system

has been reduced to a calculation over a finite system. Error checking is done by using

the coefficients found in Eq. (5.2) to reconstruct the lasing mode intensity distribution

with Eq. (5.1) yielding R(x) ≡ ∑

m amψm(x). We define a reconstruction error ER to
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monitor the accuracy of the decomposition:

(5.5) ER =

∫

|Ψ(x) − R(x)|2dx
∫

|Ψ(x)|2dx .

5.1.2. Standing Wave and Traveling Wave Components

In this section, we describe the method that enables one to define a standing wave com-

ponent and a traveling wave component of the field at each point x of a 1D system.

For an open structure without gain, the field reads

(5.6) ψ(x) = p(x) exp[in(x)k̃x] + q(x) exp[−in(x)k̃x],

where k̃ is the complex wavevector and n(x) is the index of refraction, the value of which

alternates between n(x) = n1 > 1 in dielectric layers and n(x) = n2 = 1 in air gaps. For

structures with gain, the field reads

(5.7) Ψ(x) = p(x) exp[iñ(x)kx] + q(x) exp[−iñ(x)kx],

where ñ(x) = n(x) + ini is the complex index of refraction. We rewrite both equations in

the single form

(5.8) E(x) = p(x) exp[iK̃(x)x] + q(x) exp[−iK̃(x)x],

where K̃(x) = Kr(x) + iKi(x) and E(x) may be either ψ(x) or Ψ(x).

For now, we will consider the field within a single layer in order to simplify the notation.

The following results will be valid within any layer. Since within a layer, the coefficients
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p(x), q(x) and the wavevector K̃(x) do not depend on x, we rewrite Eq. (5.8) as

(5.9) E(x) = p exp[iK̃x] + q exp[−iK̃x].

The complex amplitudes p and q of the right-going and left-going fields, respectively, can

be written as p = P exp[iϕ] and q = Q exp[iφ] where P and Q are the real amplitudes

which can be chosen positive. The field becomes

E(x) =P exp[−Kix] exp[i(Krx+ ϕ)]

+Q exp[Kix] exp[−i(Krx− φ)]

=Π(x) exp[i(Krx+ ϕ)]

+ Θ(x) exp[−i(Krx− φ)],(5.10)

where Π(x) ≡ P exp[−Kix] and Θ(x) ≡ Q exp[Kix]. Introducing the global phase Φ ≡

[ϕ+ φ]/2 and the difference ∆ ≡ [ϕ− φ]/2, the field reads

E(x) = exp[iΦ]{Π(x) exp[i(Krx+ ∆)]

+ Θ(x) exp[−i(Krx+ ∆)]}.(5.11)

Within a single layer, we can set Φ = 0 so that the field becomes

E(x) =Π(x) exp[i(Krx+ ∆)] + Θ(x) exp[−i(Krx+ ∆)]

=E(R)(x) + E(L)(x),(5.12)

where E(R)(x) and E(L)(x) are the right-going and left-going waves, respectively.
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We can build a standing wave component with E(R)(x) as

E(S)(x) =E(R)(x) + [E(R)(x)]∗

=2Π(x) cos[Krx+ ∆](5.13)

and define the traveling wave component as the remaining part of the total field

E(T )(x) =E(x) − E(S)(x)

=E(L)(x) − [E(R)(x)]∗

=[Θ(x) − Π(x)] exp[−i(Krx+ ∆)].(5.14)

Hence, 2Π(x) and [Θ(x) − Π(x)] are the amplitudes of the standing wave and traveling

wave components, respectively.

It is also possible to build a standing wave component with E(L)(x) as

E(S)(x) =E(L)(x) + [E(L)(x)]∗

=2Θ(x) cos[Krx+ ∆](5.15)

so that the traveling wave component reads

E(T )(x) =E(x) − E(S)(x)

=E(R)(x) − [E(L)(x)]∗

=[Π(x) − Θ(x)] exp[i(Krx+ ∆)].(5.16)
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Comparing both ways of resolving the total field into its two components, we see that

in Eq. (5.14) the traveling wave component is a left-going wave while in Eq. (5.16) it is

a right-going wave. Hence, if in the expression of the field in Eq. (5.12), the prevailing

wave is the right-going wave Π(x) exp[i(Krx + ϕ)] (i.e., Π(x) > Θ(x)), we choose the

standing and traveling wave components of Eqs. (5.15) and (5.16). In the opposite case

of Π(x) < Θ(x), we choose the standing and traveling wave components of Eqs. (5.13)

and (5.14).

Let us note that the imaginary part of the total field E(x) is given in both cases by

(5.17) Im[E(x)] = [Π(x) − Θ(x)] sin[Krx+ ∆].

As expected, the presence of a traveling wave component, i.e., |Π(x) − Θ(x)| 6= 0, makes

E(x) become complex instead of being real for a pure standing wave.

5.1.3. Effective Potential of a Dielectric Structure

Further physical insight on lasing mode formation and disappearance, as well as new lasing

mode appearance is provided by a mapping of an “effective potential” dictated by the

random structure. Local regions of the random medium reflect light at certain frequencies

but are transparent to others [172]. The response of a structure to a field with frequency

ω = ck can be calculated via a wavelet transformation of the real part of the dielectric

function ǫr(x) = n2(x) [173]. The relationship between the local spatial frequency qres

and the optical wavevector k is approximately qres = 2k in weakly scattering structures.
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The Morlet wavelet χ is expressed as

(5.18) χ

(

x′ − x

s

)

=
π−1/4

√
s
eiω0(x′−x)/se−(x′−x)2/2s2

,

with nondimensional frequency ω0 and Gaussian envelope width s [174]. With ω0 fixed,

stretching the wavelet through s changes the effective frequency. Wavelets with varying

widths are translated along the spatial axis to obtain the transformation

(5.19) W (x, qres) =

∫

ǫr(x
′)χ∗

(

x′ − x

s

)

dx′.

where

(5.20) qres =
ω0 +

√

2 + ω2
0

2s
.

The wavelet power spectrum |W (x, qres)|2 is interpreted as an effective potential. Regions

of high intensity indicate potential barriers and regions of low intensity indicate potential

wells for light frequency ω = qresc/2.

5.2. Passive and Uniform Gain Systems

A random system of N = 161 layers is examined in the following as an example of

a random 1D weakly scattering system. The indices of refraction of the dielectric layers

are n1 = 1.05 and the air gaps n2 = 1. The average thicknesses are 〈d1〉 = 100 nm and

〈d2〉 = 200 nm giving a total average length of 〈L〉 = 24100 nm. The grid origin is set

at x = 0 and the length of the random structure L is normalized to 〈L〉. The degree

of randomness is set to η = 0.9 and the index of refraction outside the random media

is n0 = 1. The localization length ξ is calculated following the method in Sec. 1.1.2.
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Figure 5.1. Effective potential (wavelet power spectrum) |W (x)|2 of the di-
electric function ǫr(x) as a function of position x and wavelength λ. Regions
of high intensity indicate potential barriers and regions of low intensity indi-
cate potential wells where intensities are typically trapped. The black lines
on the top represent the spatial distribution of dielectric constant ǫr(x) =
n2(x).

The above parameters ensure that the localization length is nearly constant at 200 µm

≤ ξ ≤ 240 µm over the wavelength range 500 nm ≤ λ ≤ 750 nm. With ξ ≫ L, the system

is in the ballistic regime.

Figure 5.1 shows the effective potential of the structure within the wavelength range

of interest via a wavelet transformation. We use a nondimensional frequency of ω0 = 6

[175] and a spatial sampling step of ∆x = 2 nm. The power spectrum |W (x)|2 reveals

the landscape of the effective potential dictated by the locations and thicknesses of the

dielectric layers.

Figure 5.2 is a phase map of M22 in the passive case (with no gain). The phase

singularities mark the quasi modes’ k̃ values and are indicated by phase changes from

−π to π along any lines passing through. The topological charge of all quasi modes
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Figure 5.2. A mapping of the phase θ of M22 for the passive 1D random
system with no gain. The topological charge of all quasi modes seen here is
−1. Modes are enumerated from left to right. Quasi mode 27 is encircled
in black.

is −1. Adjacent modes are formed by real and imaginary zero lines of M22 that are

not connected to one another. We calculated M22 for increasingly large |ki| values until

machine precision was reached and no additional modes were found. As previously found

[47], mode frequency spacing is fairly constant in the ballistic regime. The nearly equal

spacing of phase singularities in Fig. 5.2 attests to this.

Most quasi modes have similar decay rates except for a few which have much larger

decay rates. Modes are enumerated here starting with the lowest frequency mode in our

wavelength range of interest. Mode 1 has a wavelength of 748 nm and mode 33 has a

wavelength of 502 nm. Most quasi modes have ki values around −0.1 µm−1. But a few

have much larger decay rates, such as mode 27 at λ = 532 nm which has ki = −1.03

µm−1 (encircled in black in Fig. 5.2). Figure 5.3 shows the intensity of mode 27 to be

concentrated on one side of the open structure. We observe that it bears similarity to
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Figure 5.3. Normalized intensity |ψ(x)|2 of a leaky mode - quasi mode 27

(k̃ = 11.8− i1.03 µm−1) of the passive random 1D structure. The intensity
is peaked at the left boundary of the structure, similar to doorway states.

“doorway states” common to open quantum systems [176]. Doorway states are concen-

trated around the boundary of a system and strongly couple to the continuum of states

outside the structure. Therefore, they have much larger decay rates.

Figure 5.4 compares the quasi mode frequencies and decay rates to the thresholds

(multiplied by k for comparison). For the case of uniform gain, only the lasing modes

with large thresholds change significantly from the quasi modes of the passive system [Fig.

5.4(c)]. Finding the corresponding quasi modes for lasing modes with large thresholds is

challenging due to changes caused by the addition of a large amounts of gain. However,

there is a clear one-to-one correspondence with quasi modes for the remaining lasing

modes [Figs. 5.4(a) and (b)]. It is straightforward to find the matching quasi modes for

these lasing modes and calculate their differences. The average percent difference between

quasi mode frequencies and lasing mode frequencies in Fig. 5.4(a) is 0.013% and in Fig.

5.4(b) is 0.15%. The average percent difference between quasi mode decay rates ki and

lasing thresholds nik in Fig. 5.4(a) is 2.5% and in Fig. 5.4(b) is 21%.
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Figure 5.4. The frequencies k of quasi modes (crosses) and lasing modes
with linear gain (open diamonds) together with the decay rates ki of quasi
modes and the lasing thresholds nik of lasing modes. The horizontal dashed
lines separate 3 different regions of behavior: (a) lasing modes are easily
matched to quasi modes, (b) clear differences appear but matching lasing
modes to quasi modes is still possible, (c) lasing modes have shifted so
much it is difficult to match them to quasi modes. The quasi mode with
the largest decay rate and the lasing mode with the largest threshold are
circled, though they may not be a matching pair.

The normalized intensities of the quasi modes IQ(x) ≡ |ψ(x)|2 and lasing modes

IL(x) ≡ |Ψ(x)|2 are also compared. Figure 5.5 shows representative ‘pairs’ of modes from

the 3 regions shown in Fig. 5.4. The spatially averaged percent difference between each

pair of modes is calculated as σd ≡ (2/L)
∫

{|IQ(x) − IL(x)|/[IQ(x) + IL(x)]} dx×100. For

small thresholds [Fig. 5.5(a)], the difference between the lasing modes and the matching

quasi modes is very small. The average percent difference between all pairs of modes in

this region is 〈σd〉 = 4.0%. For lasing modes with slightly larger thresholds [Fig. 5.5(b)],

there are clear differences. Nevertheless, we may confidently match each lasing mode in

this region with its corresponding quasi mode. The average percent difference between

all pairs of modes in this region is 〈σd〉 = 68%. As mentioned earlier, it is challenging to

find matching pairs of lasing modes and quasi modes for large thresholds. Figure 5.5(c)
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Figure 5.5. Spatial intensity distributions of quasi modes IQ(x) (red solid
lines) and lasing modes IL(x) (black dashed lines) from each of the 3 regions
in Fig. 5.4. Representative samples were chosen for each case. (a) The
lasing mode intensity is nearly identical to the quasi mode intensity with
σd = 2.2%. (b) A clear difference appears between the lasing mode and the
quasi mode, with σd = 90%, but they are still similar. (c) The lasing mode
with the largest threshold and quasi mode with the largest decay rate are
compared, with σd = 190%. Though these two modes are fairly close to
each other [circled in Fig. 5.4(c)], their intensity distributions are quite
different.

compares the lasing mode with the largest threshold and the quasi mode with the largest

decay rate [circled in Fig. 5.4(a)]. Though these two modes are fairly close to each other

in terms of k, ki, and nik, their intensity distributions are quite different. Indeed, there

may be no correspondence between the two.

The index contrast for this structure is ∆n = n1/n2 − 1 = 0.05. Compare this to ni

values in Fig. 5.4: (a) 〈ni〉 ≈ 0.01, (b) 〈ni〉 ≈ 0.03, (c) 〈ni〉 ≈ 0.05. As the threshold ni

approaches ∆n, the influence on lasing modes becomes more and more dramatic.

The deviation of the lasing modes from the quasi modes can be explained by the mod-

ification of the transfer matrix. In the passive system, ki is constant, but the imaginary

exponent n(x)ki varies spatially. With the introduction of gain, the imaginary exponent
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nik becomes constant within the random system, and feedback due to the inhomogeneity

of n(x)ki is removed. However, introducing gain generates additional feedback inside the

random system caused by the modification in the real part of the exponent knr(x). Ne-

glecting this effect results in some correspondence between lasing modes and quasi modes

even at large thresholds [47]. Furthermore, since there is no gain outside the random

system, nik suddenly drops to zero at the system boundary. This discontinuity of nik

generates additional feedback for the lasing modes. In this weakly scattering system, the

threshold gain is high. The large drop of nik at the system boundary makes the additional

feedback stronger.

5.3. Modal Behavior with Gain Region Reduction

Figure 5.6 maps the (k, ni) values of lasing modes as nonuniform gain is introduced

by reducing the gain region length from lG = L. In this weakly scattering system the

intensity distributions of modes are spatially overlapping. This results in a repulsion of

mode frequencies [177]. As the size of the gain region changes, the envelopes of the

intensity distributions change, but for most modes ni is small enough to leave the optical

index landscape unchanged. Thus, the modes continue to spatially overlap as the size of

the gain region changes and their frequencies remain roughly the same as in the uniform

gain case. Similar frequency behavior can be seen as the gain region length is varied in

a simpler cavity with uniform index. However, the threshold values of the lasing modes

change as lG decreases. Due to the limited spatial region of amplification, the thresholds

increase. The increase of ni due to the change of threshold, though considerable, is not
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Figure 5.6. Frequencies and thresholds (k, ni) of the lasing modes of the 1D
random structure with gain. Lasing modes 1, 17, 18, and 33 are explicitly
marked. The gain region length lG reduces from uniform gain (lG = L) to
nonuniform gain lG < L. The color indicates the value of lG (units of nm)
decremented along the layer interfaces. Due to the random thicknesses of
the layers, the lG increments are unequal. This is the reason for the unequal
spacing of the color code.

large enough to significantly impact the lasing frequencies as evidenced by the small

change of frequencies as lG decreases.

The intensity distributions of the lasing modes also change considerably as lG is re-

duced. Normalized spatial intensity distributions are given by |Ψ(x)|2 after Ψ(x) has

been normalized according to Eq. (5.4). The intensities are sampled with a spatial step

of ∆x = 2 nm. With uniform gain (lG = 24100 nm), the intensity of lasing mode 17

(λ = 598 nm) in Fig. 5.7(a) increases toward the gain boundaries due to weak scattering

and strong amplification. When the gain boundary is changed to lG = 14284 nm, the en-

velope of the spatial intensity distribution changes dramatically. The intensity increases

more rapidly toward the boundaries of the gain region and stays nearly constant outside

the gain region but still inside the structure. This change can be understood as |ni| inside
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Figure 5.7. Normalized intensity of lasing mode 17 with uniform gain lG =
24100 nm (red solid lines) and nonuniform gain lG = 14284 nm (black
dashed lines). Gain is only located in the region 0 ≤ x ≤ lG. (a) Total
intensity |Ψ(x)|2, (b) traveling wave intensity |Ψ(T )(x)|2, and (c) standing
wave intensity |Ψ(S)(x)|2. Nonuniform gain significantly changes the spatial
intensity envelope as well as the standing wave and traveling wave compo-
nents.

the gain region causes the intensity to become larger, while outside the gain region ni = 0

and the wavevector is real.

To monitor the change in the trapped component of the intensity, Ψ(x) is separated

into a traveling wave and a standing wave component. Figures 5.7(b) and (c) show the

traveling wave and standing wave components of lasing mode 17, respectively. For lG = L,

the intensity increase towards the structure boundaries is caused mostly by the growth

of the traveling wave. The standing wave part is strongest near the center of the system.

For lG = 14284 nm, the standing wave exhibits two peaks, one concentrated near the

center of the gain region and the other outside the gain region. However, the standing

wave intensity outside the gain region should not be directly compared to the standing

wave intensity inside the gain region. The total intensity inside the gain region increases

toward the gain boundary in this weakly scattering system. Thus, the amplitude of the
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Figure 5.8. Standing/traveling wave ratio AST (x) (red solid lines) of lasing
mode 17 with uniform gain lG = L (a) and nonuniform gain lG = 14284 nm
(b). Gain is located in the regions left of the vertical black solid line. We
term the location at which the ratio diverges (AST (x) → ∞), the standing
wave center (SWC). The potential profile |W (x)|2 (black dashed lines) of
the dielectric function at the wavelength of mode 17 is overlaid in both (a)
and (b).

field outside the gain region, where there is no amplification, is determined by the total

field amplitude at the gain boundary. The randomness of the dielectric function outside

the gain region traps part of the wave which results in a relatively large standing wave

intensity compared to inside the gain region. However, outside the gain region, there is a

net flux toward the right boundary of the system meaning the traveling wave intensity in

this region is large as well.

The relative strength of the standing wave is calculated through the ratio of standing

wave amplitude to traveling wave amplitude. The amplitudes are calculated in Appen-

dix 5.1.2. Depending on whether the prevailing wave is right-going or left-going, the
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standing/traveling wave ratio is given by

(5.21) AST (x) =











∣
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Θ(x)−Π(x)

∣

∣

∣

2

,Π(x) < Θ(x).

Results from considering uniform and nonuniform gain for lasing mode 17 are shown

in Fig. 5.8. Where the standing wave is largest inside the gain region, |Ψ(T )(x)| =

|Θ(x) − Π(x)| = 0 and the ratio AST (x) is infinite. The location where the ratio is

diverging is the position of pure standing wave. Fields are emitted in both directions

from this position. The prevailing wave to the right of this standing wave center (SWC)

is right-going. The prevailing wave to the left of this SWC is left-going. The SWC of

the lasing mode is located near the center of the total system when considering uniform

gain in Fig. 5.8(a). With the size of the gain region reduced in Fig. 5.8(b), we see that

the SWC of the lasing mode (where AST (x) → ∞) moves to stay within the gain region.

Furthermore, note that this mode has a relatively small threshold (see Fig. 5.6). We have

found that in general, modes with low thresholds have a SWC near the center of the gain

region while high threshold modes have a SWC near the edge of the gain region.

The cause for the small peak of AST (x) outside the gain region can be found in the

potential profile of Fig. 5.1. A slice of the potential profile |W (x)|2 at the wavelength

of mode 17 (λ = 598 nm) is overlaid on the intensities in Fig. 5.8. This suggests the

standing wave is weakly trapped in a potential well around x = 20500 nm [marked by an

arrow in Fig. 5.8(b)].
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Figure 5.9. Decomposition of lasing mode 17 in terms of passive quasi
modes. (a) Decomposition with uniform gain (red crosses) and nonuniform
gain (black circles). Leaky quasi modes, i.e., modes with large |ki| such as
modes 7, 14, and 23, contribute to lasing modes markedly different than the
others. (b) Five largest coefficients from the decomposition of lasing mode
17. As lG is reduced, the amount of mode mixing increases dramatically.
The reconstruction error ER for lasing mode 17 is close to 10−4 until lG =
11000 nm then rises to 10−2 at lG = 3200 nm. Some coefficients are greater
than one. This is possible in open systems.

5.4. Mode Mixing

Lasing modes can be expressed as a superposition of quasi modes of the passive system

via Eq. (5.1) for any distribution of gain. Coefficients obtained from the decomposition

of the lasing modes in terms of the quasi modes by Eq. (5.2) offer a clear and quantitative

way to monitor changes of lasing modes by nonuniform gain. Using Simpson’s rule for the

numerical integrations and a basis consisting of at least 15 quasi modes at both higher and

lower frequencies than the lasing mode being decomposed, we consistently find ER ≈ 10−4.

Figure 5.9(a) shows the decomposition of lasing mode 17 with uniform and nonuniform

gain. Beginning with the case of uniform gain (lG = L), the largest contribution to lasing

mode 17 is from corresponding quasi mode 17. There is a nonzero contribution from other

quasi modes on the order 10−3. This reflects slight differences between the lasing mode
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profile in the presence of uniform gain and the quasi mode profile [42, 43, 47]. With

the gain region length reduced to lG = 14284 nm, the coefficients |am|2 from quasi modes

closer in frequency to the lasing modes increase significantly; i.e., quasi modes closer in

frequency are mixed in. The exceptions are the very leaky quasi modes 7, 14, and 23.

Unlike leaky quasi mode 27 shown in Fig. 5.3, quasi modes 7, 14, and 23 have intensities

which are peaked at the right boundary of the structure. It has been observed that when

lG reduces and the intensity distribution of lasing mode 17 shifts to the left boundary of

the structure, there is less overlap with these leaky quasi modes. Thus, the magnitude of

the coefficients associated with the leaky modes reduces as shown in Fig. 5.9(a).

Figure 5.9(b) reveals the five largest coefficients |am|2 for lasing mode 17 as lG is

incrementally reduced along the dielectric interfaces. While the lasing mode remains

dominantly composed of its corresponding quasi mode, neighboring quasi modes mix into

the lasing mode significantly. It was shown in [42, 43] that linear contributions from gain

induced polarization bring about a coupling between quasi modes of the passive system.

This coupling arises solely due to the inhomogeneity of the dielectric function, not the

openness of the system. While this interaction may play a role in mode mixing with

uniform gain, the effect is small compared to the mode mixing caused by the nonuniformity

of the gain. This is clearly demonstrated in Fig. 5.9(b), where the coefficients from quasi

modes close in frequency are orders of magnitude larger for small lG than for lG = L.

5.5. Lasing Mode Disappearance and Appearance

As the size of the gain region reduces we observe that some lasing modes disappear

and new lasing modes appear. This phenomenon is not limited to random media, but
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Figure 5.10. (left) Real (green) and Imaginary (red) zero lines of M22.
Their crossings indicate (k, ni) values of lasing modes. (right) Phase maps
of M22. All data are in the ranges (10.3 µm−1 < k < 10.8 µm−1) and
(0 ≥ ni ≥ −0.074) covering lasing modes 17 and 18 for lG = 14961 nm
(a-b), 14553 nm (c-d), 14523 nm (f-g), 14472 nm (h-i), 14284 nm (j-k), and
14042 nm (l-m). The joining of zero lines in (c) results in the formation of a
new lasing mode (new zero line crossing is encircled in white). The inset in
(c) is an enlargement of the mode 17 and new mode solutions. In (d), the
phase singularity at the new mode has a topological charge of +1, opposite
to that of mode 17. The real and imaginary zero lines pull apart in (f) so
that the mode 17 and new mode solutions are nearly identical. The phase
map in (g) reveals the existence of the two phase singularities. The lines
completely separate in (h) resulting in the disappearance of mode 17 and
the new mode. The phase map in (i) confirms the disappearance of the two
modes. This process reverses itself in (j-m) yielding behavioral symmetry
around lG = 14472 nm.

even occurs in a simple 1D cavity with a uniform index of refraction. New lasing modes,

to the best of our knowledge, are always created with larger thresholds than the existing
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lasing modes adjacent in frequency. The disappearance of lasing modes is not caused by

mode competition for gain because gain saturation is not included in our model of linear

gain. Disappearance/appearance events occur more frequently for smaller values of lG.

New lasing modes appear at frequencies in between the lasing mode frequencies of the

system with uniform gain. These new modes exist only within small ranges of lG. We

also find that the disappearance events exhibit behavioral symmetry (as explained below)

around particular values of lG.

We examine the progression of one representative event in detail. The gaps in the

decomposition coefficients for lasing mode 17 in Fig. 5.9(b), in the range 10500 nm

≤ lG ≤ 14500 nm, indicate lasing mode 17 does not exist for those distributions of gain.

Figure 5.10 shows the real and imaginary zero lines of M22 and their accompanying phase

maps for lG = 14961 nm, 14553 nm, 14523 nm, 14472 nm, 14284 nm, and 14042 nm. As

lG decreases, the zero lines of lasing modes 17 and 18 join as seen in the transition from

Fig. 5.10(a) to (c). This creates a new mode solution (marked by a white circle) with a

frequency between lasing modes 17 and 18 and a larger threshold. The existence of a new

lasing mode is confirmed by the phase singularity in Fig. 5.10(d). The new mode is close

to mode 17 in the (k, ni) plane and its phase singularity has the opposite topological

charge as seen in Fig. 5.10(d). As lG decreases further, the joined zero lines forming

mode 17 and the new mode pull apart. This causes the two solutions to approach each

other in the (k, ni) plane, i.e., the frequency and threshold of mode 17 increase while the

frequency and threshold of the new mode decrease. In Figs. 5.10(f) and (g), the solutions

are so close that they are nearly identical, yet they still represent two separate solutions.

Further decreasing lG makes the solutions identical. The zero lines then separate and the
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Figure 5.11. (a) Standing/traveling wave ratio AST (x) of the new lasing
mode (red) and lasing mode 17 (black) for lG = 14553 nm (solid lines)
and lG = 14523 nm (dotted lines). The potential profile |W (x)|2 (black
dashed line) of the dielectric function for this wavelength is overlaid in
both (a) and (b) and major potential barriers are marked ➀ through ➃ .
The intensity distributions of the new lasing mode and lasing mode 17
become more similar an converge on each other as lG reduces. Reducing lG
further causes these two lasing modes to first disappear then reappear as the
process reverses itself. (b) Standing/traveling wave ratio AST (x) of the new
lasing mode (red) and lasing mode 17 (black) after they have reappeared for
lG = 14284 nm. The intensity distributions are similar to the distributions
for lG = 14553 nm in (a). The vertical black solid line marks the gain edge.
The intensity distributions of the modes diverge now as lG is reduced.

phase singularities of opposite charge annihilate each other in Figs. 5.10(h) and (i). This

results in the disappearance of mode 17 and the new mode. The process then reverses

itself as lG is decreased further [Figs. 5.10(j)-(m)] yielding the reappearance of mode

17 and the new mode and their subsequent separation in the (k, ni) plane. This is the

aforementioned behavioral symmetry around lG = 14472 nm.

Examining the standing/traveling wave ratio of lasing mode 17 and the new lasing

mode together with the potential profile |W (x)|2 offers some insight of mode annihilation

and reappearance in real space. Figure 5.11 shows the intensity distribution for the new
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mode and mode 17 along with |W (x)|2. The potential profile is very similar for the new

mode and mode 17 since their wavelengths are very close. There are four major potential

barriers at the mode 17 wavelength (λ = 598 nm) for x < 15000 nm. This is the spatial

region associated with the gain distributions in Fig. 5.10 where lG is always smaller than

15000 nm. Figure 5.11 shows them at: x = ➀ 927 nm, ➁ 5200 nm, ➂ 8700 nm, and ➃

14519 nm. Due to oscillations, the centers of barriers ➁ and ➂ are less well defined. The

right edge of the gain region at lG = 14553 nm is located just to the right of barrier ➃ . For

lG = 14523 nm, the right edge of the gain region nears the maximum of barrier ➃ . Figure

5.11(a) shows that for lG = 14553 nm, the SWC of the new mode is between barrier ➀ and

barrier ➁ . The SWC of mode 17 is in the middle of the gain region at x = 5300 nm and

its SWC is between barrier ➁ and barrier ➂ . Before disappearing, the modes approach

each other in the (k, ni) plane, eventually merge, and their intensity distributions become

identical. As lG is further reduced and the modes reappear, the behavior of the modes’

intensity distributions reverses itself as expected from the behavioral symmetry shown in

Fig. 5.10. At lG = 14284 nm, the right edge of the gain region has passed barrier ➃ and

Fig. 5.11(b) [with a different horizontal scale than Fig. 5.11(a)] shows the SWC of the

new mode is in roughly the same location as it was for lG = 14553 nm. The SWC of mode

17 is also in roughly the same location as it was for lG = 14553 nm.

The appearance of new lasing modes is unanticipated. In the passive system, the

number of standing wave peaks for quasi modes increases incrementally by 1, e.g. quasi

mode 17 has 82 peaks and quasi mode 18 has 83 peaks. Lasing modes 17 and 18 behave

the same way. How exactly does a new lasing mode fit into this scheme? Though closer in

frequency and threshold to lasing mode 17, counting the total number of standing wave
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Figure 5.12. Decomposition at lG = 14284 nm of lasing mode 17 (black
circles), lasing mode 18 (blue open diamonds), and the new lasing mode (red
crosses) in terms of the quasi modes of the passive system. Lasing modes
17 and 18 are mostly composed of their respective quasi modes while the
new mode is dominated by a mixture of both quasi mode 17 and 18. The
inset shows the decomposition coefficients of outlying quasi modes for lasing
mode 17 (black line), lasing mode 18 (blue line), and the new lasing mode
(red line).

peaks of the new lasing mode yields the same number as for lasing mode 18. However,

the new lasing mode is somewhat compressed in the gain region having one more peak

than lasing mode 18. It is decompressed in the region without gain having one less peak

than lasing mode 18.

Comparing the decompositions of the lasing modes in terms of quasi modes helps

reveal the character of the new lasing mode. Figure 5.12 shows the decomposition of the

new lasing mode together with the decomposition of lasing modes 17 and 18 at lG = 14284

nm. The new mode has a slightly larger coefficient amplitude associated with quasi mode

17 than quasi mode 18, but the two amplitudes are nearly equal. We found that as

mode 17 and the new mode solutions approach each other by varying lG, their coefficient
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distributions also approach each other until becoming equal as expected from Figs. 5.10

and 5.11.

For a more thorough study of the new lasing modes and confirmation of their existence

in the presence of gain saturation, we switch to a more realistic gain model including non-

linearity. The Maxwell-Bloch (MB) equations, as described in Sec. 1.4.3, are employed.

The phenomenological decay times due to the excited state’s lifetime T1 and decoherence

T2 are included. The gain spectral width is given by ∆ωa = 1/T1 + 2/T2 [14]. We also

include incoherent pumping of atoms. The equations are solved numerically with the

spatial grid step ∆x = 1.0 nm and the temporal step ∆t = 3.3 × 10−18 s. The atomic

density Natom/V = 1.8×1013 cm−3. Nonuniform gain is simulated by having the two-level

atoms only in the region 0 ≤ x ≤ lG.

By setting the atomic transition wavelength λa to coincide with the wavelength of

mode 1, 2 or the new mode and using a narrow gain spectrum, we are able to investigate

the three lasing modes separately. ∆ωa is chosen to be less than the mode spacing to

ensure single mode lasing (at smaller pumping rates). At lG = 14.295 µm, the wavelength

difference between mode 2 and the new mode, which is smaller than that between mode 1

and the new mode, is λ2−λnm = 1.4 nm. We set T1 = 1.0×10−12 s and T2 = 0.73×10−12

s so that the gain spectral width in terms of wavelength is ∆λa = 0.71 nm. Initially all

atoms are in their ground state and the system is excited by a Gaussian-sinusoidal pulse

with center wavelength λ0 = λa and spectral width ∆λ0 = ∆λa. When the pumping rate

Pr is above a threshold value, the electromagnetic fields build up inside the system until

a steady state is reached.
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Figure 5.13. Steady-state output intensity vs. pumping rate Pr from
Maxwell-Bloch simulations with different gain spectra. The wavelength
of the atomic transition λa is equal to λ1 (red crosses), λ2 (blue open dia-
monds), and λnm (black circles) [178].

Figure 5.13 shows the steady-state output intensity with λa = λ1, λ2, or λnm as

Pr is varied. Pr = 1 corresponds to the transparency point, namely, the excited state

population of atoms is equal to that of the ground state. The lasing threshold pumping

rate for mode 1 is reached first at Pr = 1.9, then mode 2 at Pr = 2.1 and the new mode

at Pr = 3.0. These thresholds agree qualitatively with the values of the TM calculation.

When λa = λnm, the first lasing mode is the new mode, instead of mode 1 or 2.

Figure 5.14(a) shows the output emission spectrum just above the lasing threshold at

Pr = 3.0. It consists of a single lasing mode with the wavelength equal to that of the

new mode calculated with the TM method. The spatial intensity distribution obtained

from the Maxwell-Bloch (MB) calculation is compared to that from the TM calcula-

tion in Fig. 5.14(b). The MB distribution |φMB(x)|2 is found by integrating the inten-

sity over one optical period. It is then normalized to the TM distribution |φTM(x)|2 as

∫ L

0
|φMB(x)|2dx =

∫ L

0
|φTM(x)|2dx. The two intensity distributions are almost identical.

The average percent difference between them is 7.77%. This result indicates the nonlin-

ear effect due to gain saturation is small when the pumping rate is just above the lasing
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Figure 5.14. (a) Emission spectra taken from two Maxwell-Bloch simula-
tions with λa equal to λnm (solid line) and λ2 (dashed line). In both cases,
∆λa = 0.71 nm, lG = 14.295 µm. Pr = 3.0 for the solid curve and 2.1 for the
dashed curve. The emission intensity reaches a steady state by a simulation
time of t = 300 × 10−12 s. The spectra are taken from 1400 × 10−12 s to
1700×10−12 s. The MB intensity distribution |φMB(x)|2 (black dashed line)
is compared to the TM intensity distribution |φTM(x)|2 (red solid line) for
the new lasing mode (b) and mode 2 (c). The inset in (b) is an expansion
of the curves for 0 µm < x < 10 µm.

threshold. When the peak of the gain spectrum is shifted from λnm to λ1 or λ2, the

first lasing mode is switched to mode 1 or 2. Figure 5.14(c) plots the spatial intensity

distribution of mode 2 obtained by the MB calculation with λa = λ2 and Pr = 2.1 as well

as that obtained by the TM calculation. The two distributions are almost the same and

they are different from the distribution with uniform gain. Comparing Fig. 5.14(b) to

(c), we see the spatial intensity distribution of the new lasing mode differs significantly

from that of mode 2 within the gain region. Outside the gain region the two distributions

are not much different because their wavelengths are very close.
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When optical gain is located on the left side of the structure, we observe that the

intensity distributions of new lasing modes are heavily concentrated on the right side of

the gain region. This makes the emission intensity through the right boundary of the

random system much larger than that through the left boundary. We calculate the the

ratio of right to left output flux Sx ≡ |φ(x = L)|2/|φ(x = 0)|2. For the new lasing mode in

Fig. 5.14(b) Sx = 40, indicating the laser output is mostly to the right. As a comparison,

Sx = 1.1 for mode 1 and Sx = 3.3 for mode 2. Thus, the new lasing mode has much more

directional output than modes 1 and 2.
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CHAPTER 6

Conclusion

In an effort to simulate fluctuations in macroscopic systems caused by interactions

of atoms and photons with reservoirs Such interactions induce temporal decay of pho-

ton number, atomic polarization and excited state’s population, which can be described

phenomenologically by decay constants. The fluctuation-dissipation theorem demands

temporal fluctuations or noise to accompany these decays.

In Ch. 2, we included noise caused by the interaction of the light field with external

reservoir in an open system. We have calculated the fluctuations of EM fields in open

cavities due to output coupling with the FDTD method. The fluctuation dissipation

theorem dictates that the cavity field dissipation by leakage be accompanied by thermal

noise, which is simulated here by classical electrodynamics. The absorbing boundary

of the FDTD grid is treated as a blackbody, which radiates into the grid. We have

synthesized the noise sources whose spectrum is equal to that of blackbody radiation.

Careful selection of numerical parameters in the FDTD simulation avoids the distortion

of the noise spectrum by wave propagation in the 1D grid. It is numerically confirmed

that the noise fields propagating in vacuum retain the blackbody spectrum and temporal

correlation function. When a cavity is placed in the grid, the thermal radiation is coupled

into the cavity and contributes to the thermal noise for the cavity field. We calculate

the thermal noise in a 1D dielectric slab cavity. In the Markovian regime where the

cavity photon lifetime τ is much longer than the coherence time of thermal radiation
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τc, the FDTD-calculated amount of thermal noise in a cavity mode agrees with that

given by the quantum Langevin equation. This validates our numerical model of thermal

noise which originates from cavity openness or output coupling. Our FDTD simulation

also demonstrates that in the non-Markovian regime the steady-state number of thermal

photons in a cavity mode exceeds that in a vacuum mode. This is attributed to the

constructive interference of the thermal field inside the cavity.

In Ch. 3, we developed a numerical model to simulate noise caused by the interaction

of atoms with reservoirs such as lattice vibrations and atomic collisions. Specifically, an

FDTD algorithm was developed to incorporate stochastic noise in macroscopic systems

into the Maxwell-Bloch equations. Such noise, resulting from atom-reservoir interactions,

accompanies the dephasing of atomic polarization and decay of and pumping to the excited

state population. We applied our algorithm to a numerical simulation of superfluorescence

in a 1D system. The results are in good agreement with previous experimental and the-

oretical studies. An incoherent pumping rate was then included (as well as associated

fluctuations) and the influence of noise on a dielectric slab laser was studied. The lasing

threshold was found to increase due to noise. A method was developed to objectively

calculate the mode linewidth with increasing pumping rates. The result followed the pre-

dicted Schawlow-Townes linewidth trend. Although our simulations only include classical

noise, nonclassical noise may be incorporated as well. Since they consist of nonlinear

terms [126], the incorporation of nonclassical fluctuations to the FDTD algorithm may

be numerically challenging. Given the rapid progress in development of various numeri-

cal methods of including nonlinearity in the Maxwell-Bloch equations [179, 180], we are

optimistic that the quantum noise terms may be successfully integrated into our method.
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In Ch. 4, the effects of noise on a random laser were studied employing the above

FDTD-based model which is particularly well suited for studies of light-matter interaction

and transient processes in complex systems. Three random lasers yielded very similar

results in that lasing thresholds were always found to increase. However, the transition

from amplified spontaneous emission to lasing oscillation was different in each case. High

index contrast gave lower lasing thresholds, thereby keeping the transition region short.

Low index contrast extended this transition region. Again, the trend of mode linewidths

was examined. In this case, the laser operated in the multimode regime, which only

resulted in a Schawlow-Townes linewidth trend for the dominant mode. The mode with

the second largest amplitude showed a linewidth which decreased more slowly with the

pumping rate. The third system studied was a partially pumped random laser with

low index contrast. As expected, thresholds increased more for this case. However,

it was found that lasing action may be more easily obtained due to some modes with

large thresholds increasing the effective frequency spacing of the small threshold modes.

The number of available lasing modes did not reduce, as previously though, but larger

separation in frequency and threshold facilitates lasing action in partially pumped lasers.

These studies are hoped to shed light on the transition from ASE to lasing oscillation

in random lasers which is poorly understood. Most notably, ASE can understandably be

confused with lasing with nonresonant feedback. It is hoped that future studies with this

method will provide clues toward distinguishing the two processes.

In Ch. 5 we extended the study of lasing with partial pumping, or equivalently,

spatially nonuniform gain. We demonstrated the characteristics of lasing modes to be
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strongly influenced by nonuniformity in the spatial gain distribution in 1D random struc-

tures. While the entire structure plays the dominant role in determining the frequency of

the lasing modes, the gain distribution mostly determines the lasing thresholds and spa-

tial distributions of intensity. The gain distribution also appears to be solely responsible

for the creation of new lasing modes. We have verified the existence of new lasing modes

in numerous random structures as well as dielectric slabs of uniform refractive index. All

of these changes caused by nonuniform gain take place without the influence of nonlinear

interaction between the field and gain medium. Our conclusion is that nonuniformity of

the gain distribution alone is responsible for the complicated behavior observed here.

By decomposing the lasing modes in terms of a set of quasi modes of the passive

system, we illustrated how the lasing modes change. The contribution of a quasi mode to

a lasing mode was seen to depend mostly on its proximity in frequency k and the spatial

distribution of gain. The more the gain changed from uniformity, the greater the mixing

in of neighboring quasi modes. Thus, great care must be taken even close to the lasing

threshold when using the properties of quasi modes to predict characteristics of lasing

modes in weakly scattering systems with local pumping.

The change of intensity distributions of lasing modes as the size of the gain region

is varied appears to be general. With reduction of the size of the gain region, the peak

of the standing/traveling wave ratio AST (x), or the standing wave center (SWC) of the

mode, moves to stay within the gain region. Modes with low thresholds have a SWC near

the middle of the gain region while high threshold modes have a SWC near the edge of

the gain region. Changing the gain distribution thus changes the intensity distributions

of lasing modes. The exact modal distributions, however, appear correlated with the
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potential profile. In the cases studied here, the new lasing mode and lasing mode 17 lay

in between two large potential barriers. Decreasing the size of the gain region brought the

intensity distributions closer together until they disappeared. These changes took place

by varying the edge of the gain region only hundreds of nanometers. Thus, even a slight

change in the gain distribution may have drastic consequences for lasing modes.

Because of the excellent agreement found between the MB and TM calculations, we

conclude that new lasing modes do appear in random lasers with spatially nonuniform

distributions of optical gain. Typically, as in the case studied here, they are sensitive to

the spatial gain distribution and disappear if the distribution is altered slightly. These

new lasing modes offer more control of random laser performance as their properties such

as frequency and output directionality can be quite different from those of existing lasing

modes. Moreover, the properties of new lasing modes can be easily altered by varying the

spatial profile of the pump beam, without modifying the random structures.
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[73] D. Chan, M. Soljačić, and J. Joannopoulos, “Direct calculation of thermal emis-
sion for three-dimensionally periodic photonic crystal slabs,” Phys. Rev. E, vol. 74,
p. 036615, 2006.

[74] F. Marquardt, “An introduction to the basics of dephasing.” Available at
http://www.quantum3000.narod.ru/papers/edu/dephasing.pdf.

[75] P. W. Milonni, The Quantum Vacuum: an introduction to quantum
electrodynamics. London: Academic Press, Inc., 1994.

[76] D. Marcuse, “Computer simulation of laser photon fluctuations: Theory of a single-
cavity laser,” IEEE J. Quantum Electron., vol. 20, pp. 1139–1148, 1984.

[77] D. Marcuse, “Computer simulation of laser photon fluctuations: Single-cavity laser
results,” IEEE J. Quantum Electron., vol. 20, pp. 1148–1155, 1984.



195

[78] G. Gray and R. Roy, “Noise in nearly-single-mode semiconductor lasers,” Phys.
Rev. A, vol. 40, pp. 2452–2462, 1989.

[79] M. Kira, F. Jahnke, W. Hoyer, and S. W. Koch, “Quantum theory of spontaneous
emission and coherent effects in semiconductor microstructures,” Prog. Quantum
Electron., vol. 23, pp. 189–279, 1999.

[80] H. F. Hofmann and O. Hess, “Quantum Maxwell-Bloch equations for spatially in-
homogeneous semiconductor lasers,” Phys. Rev. A, vol. 59, pp. 2342–2358, 1999.

[81] G. M. Slavcheva, J. M. Arnold, and R. W. Ziolkowski, “FDTD simulation of the
nonlinear gain dynamics in active optical waveguides and semiconductor microcav-
ities,” IEEE J. Sel. Topics Quantum Electron., vol. 10, pp. 1052–1062, 2004.

[82] C. W. J. Beenakker, “Thermal radiation and amplified spontaneous emission from
a random medium,” Phys. Rev. Lett., vol. 81, pp. 1829–1832, 1998.

[83] V. Y. Fedorov and S. E. Skipetrov, “Photon noise in a random laser amplifier with
fluctuating properties,” Phys. Rev. A, vol. 79, p. 063822, 2009.

[84] Photon noise (or “shot noise”), which is fluctuation of intensity measurements due
to the counting of discrete packets of light, is not studied in this thesis.

[85] P. Lodahl and A. Lagendijk, “Transport of quantum noise through random media,”
Phys. Rev. Lett., vol. 94, p. 153905, 2005.

[86] P. Lodahl, A. P. Mosk, and A. Lagendijk, “Spatial quantum correlations in multiple
scattered light,” Phys. Rev. Lett., vol. 95, p. 173901, 2005.

[87] H. Cao, Y. Ling, J. Y. Xu, C. Q. Cao, and P. Kumar, “Photon statistics of random
lasers with resonant feedback,” Phys. Rev. Lett., vol. 86, pp. 4524–4527, 2001.

[88] C. Garrod, Statistical Mechanics and Thermodynamics. New York: Oxford Univer-
sity Press, 1995.

[89] M. Planck, “On the law of distribution of energy in the normal spectrum,” Annalen
der Physik, vol. 4, p. 553, 1901.

[90] H. Haken, Laser Theory. Berlin: Springer-Verlag, 1983.

[91] R. Lang and M. Scully, “Fluctuations in mode locked ’single-mode’ laser oscillation,”
Opt. Commun., vol. 9, p. 331, 1973.



196

[92] K. Ujihara, “Quantum theory of a one-dimensional laser with output coupling. linear
theory,” Phys. Rev. A, vol. 16, p. 652, 1977.

[93] B. M. Horton, “Noise-modulated distance measuring systems,” Proc. IRE, vol. 47,
p. 821, 1959.

[94] I. Theron, E. Walton, S. Gunawan, and L. Cai, “Ultrawide-band noise radar in the
VHF/UHF band,” IEEE Trans. Antennas Propag., vol. 47, p. 1080, 1999.

[95] K. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s
equations in isotropic media,” IEEE Trans. Antennas Propag., vol. 14, pp. 302–307,
1966.

[96] A. Taflove and S. Hagness, Computational Electrodynamics. Boston: Artech House,
3rd ed., 2005.

[97] C. Guiffaut and K. Mahdjoubi, “A parallel FDTD algorithm using the MPI library,”
IEEE Trans. Antennas Propag., vol. 43, pp. 94–103, 2001.

[98] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra, MPI: The
Complete Reference. Cambridge, MA: MIT Press, 2nd ed., 1996.

[99] R. W. Ziolkowski, J. M. Arnold, and D. M. Gogny, “Ultrafast pulse interactions
with two-level atoms,” Phys. Rev. A, vol. 52, p. 3082, 1995.

[100] R. Liboff, Introductory Quantum Mechanics. Addison Wesley, 4th ed., 2003.

[101] L. Allen and J. H. Eberly, Optical resonance and two-level atoms. New York: Dover
Publications, 1987.

[102] A. Yariv, Quantum Electronics. New York, NY: John Wiley & Sons, Inc., 1989.

[103] P. W. Milonni and J. H. Eberly, Lasers. New York: John Wiley & Sons, Inc., 1988.
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