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We experimentally generate speckle patterns with non-Rayleigh statistics using a phase-only spatial light
modulator. By introducing high order correlations to the input light fields we redistribute the intensity
among the speckle grains, while preserving the granular structure of the pattern. Our method is versatile and
allows for generating speckle patterns with enhanced or diminished contrast in a controlled manner.
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Speckle patterns appear whenever a coherent wave
impinges upon a scattering sample. The granular structure
of speckles results from the sensitivity of the interference
pattern to the relative phases of the scattered partial waves.
As speckle formation is essentially a wave phenomena, it
has been observed for a wide range of waves of different
nature, including ultrasonic waves [1], microwaves [2,3],
optical waves [4], x rays [5], and matter waves [6]. In spite
of the diverse settings in which speckles appear, they
usually show universal statistical properties, known as
Rayleigh statistics. The amplitudes of the speckle field
are distributed according to the Rayleigh distribution,
resulting in a negative exponential intensity distribution
[4]. An interesting question is whether the spatial structure
of speckle patterns necessarily dictates Rayleigh statistics,
or perhaps it is possible to tailor the distribution of the
intensities among the speckle grains while maintaining the
random granular pattern.
The reason that speckle patterns typically exhibit

Rayleigh statistics is that Rayleigh statistics emerge under
rather general conditions: the field is a sum of a large
number of partial waves with independently varying
amplitudes and phases, and the phases are uniformly
distributed over a range of 2π. In the weak scattering
regime the latter condition is not satisfied; hence, non-
Rayleigh speckles with a low contrast and a strong dc
background are formed [7]. Similarly, in the near-field zone
of a scattering media where just a small number of scattered
partial waves is detected and the relative phase of these
waves does not cover the full 2π range, low contrast
speckles with nonuniversal statistics are observed [8–10].
In the strong scattering regime where the phases are
uniformly distributed, deviations from Rayleigh statistics
can be observed for a small number of partial waves, but the
statistics approaches Rayleigh statistics as the number of
partial waves is increased [11]. For generating speckles
with robust non-Rayleigh statistics that result from redis-
tribution of the intensity among the speckle grains, we need
to consider the interference of a large number of partial
waves whose phases are uniformly distributed over a range
of 2π. In this case the only way to observe non-Rayleigh

speckles is to make the complex amplitudes of the partial
waves statistically dependent. Multiple scattering can
introduce mesoscopic correlations that modify Rayleigh
statistics due to strong fluctuations in the total power that is
transmitted through the sample [12]. However, for a single
random configuration, the distribution of the intensity
between the speckle grains is a negative exponential,
indicating that the speckle field still follows Rayleigh
statistics [13,14]. Similarly, non-Rayleigh statistics are
observed when the total power that is incident on a
scattering sample fluctuates [4] or when two identical
speckle patterns with a fluctuating relative phase are
interfered [15], yet, per realization, each speckle pattern
exhibits Rayleigh statistics. We, on the other hand, are
seeking to redistribute the light among the speckle grains,
so that individual speckle patterns will also exhibit non-
Rayleigh statistics.
In this Letter we show how to tailor the speckle statistics

using a phase-only spatial light modulator (SLM) that is
illuminated by a laser beam. The SLM pixels mimic
scattering from a rough surface, and the diffraction from
each pixel corresponds to a partial wave that is scattered
from the SLM plane. We record the speckle patterns at the
Fourier plane of the SLM; where the intensity statistics are
determined by the statistical properties of the phase
matrices that are applied to the SLM. We developed a
simple method for finding the phase matrices that yield
non-Rayleigh speckles, i.e., speckle patterns with an
intensity distribution that deviates from a negative expo-
nential. Since speckle patterns are a valuable resource for
both fundamental research [2,13,14,16–20] and numerous
applications [21–29], a control of the intensity statistics can
have a dramatic impact on the way we use and analyze
speckles. For example, one can utilize tailored speckles to
synthesize the statistics of disordered optical potentials for
cold atoms and colloidal particles [30–32], or optimize the
intensity statistics per application in speckle illumination
imaging [26–29]. Since speckle patterns are intimately
related to the statistical properties of thermal light sources,
temporally fluctuating patterns are often used as pseudo-
thermal light sources. Using fluctuating non-Rayleigh
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speckles it would be possible to generate pseudothermal
sources which violate the Siegert relation and exhibit a
bunching factor gð2Þð0Þ ≠ 2, with potential applications
such as studying classical models of extrabunching
[33,34] and high-order ghost imaging [35].
To experimentally demonstrate our method for generat-

ing non-Rayleigh speckles, we start with an example for
enhancing the contrast of a speckle pattern. We use a phase-
only reflective SLM, which is illuminated by a linearly
polarized laser beam with diameter D ¼ 5 mm. The SLM
pixels are grouped to macropixels providing a control over
3000 independent phase elements. We place the SLM at the
front focal plane of a lens and record the intensity pattern at
the Fourier plane of the SLM by imaging the back focal
plane of the lens (see [36] for additional details). When we
apply to the SLM a random uncorrelated phase matrix, a
Rayleigh speckle pattern is observed at the Fourier plane
[Fig. 1(a)]. To generate a speckle pattern with an enhanced
contrast, we must send to the SLM a phase matrix
with correlated pixels. To find such a matrix, we first
numerically generate a high contrast speckle, for exam-
ple, by squaring the field of a standard Rayleigh speckle,
E2
Rayðx; yÞ. Next, we compute the inverse Fourier trans-

form, and apply the phase of the inverse Fourier trans-
form to the SLM. Figure 1(b) shows the resulting speckle
pattern of a phase matrix computed in this way. It is clearly
seen that the distribution of the intensities among the speckle

grains is different than for Rayleigh speckles [Fig. 1(a)]; a
few grains are much brighter than the rest. Indeed, the
intensity histogram collected from all the points in the
Fourier plane and over a 1000 speckle realizations decays
slower than a negative exponential, featuring the high
probability to obtain bright speckle grains [Fig. 1(d), green
diamonds]. We note that the histogram collected from a
single point in the Fourier plane follows the exact same
statistics [36]. The contrast of the patterns, defined as
C ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hI2i=hIi2 − 1

p
, where h� � �i denotes spatial averaging

over the entire Fourier plane, and an ensemble averaging, is
C ¼ 1.28. It is significantly higher than the contrast
measured for the Rayleigh speckles C ¼ 0.98. We coin
this kind of high contrast patterns super-Rayleigh speckles.
Instead of squaring the Rayleigh speckle field ERay as in

the example above, in principle, we can use any nonlinear
transformation hðERayÞ to obtain non-Rayleigh speckle.
Thus, we can generate super-Rayleigh speckles with a
higher contrast by using, for example, the fourth power of
the speckle field hðERayÞ ¼ E4

Ray. We send to the SLM the
phase of the inverse Fourier transform of E4

Ray, and observe
patterns with C ¼ 2.79 [Fig. 1(c)] and a long tailed
intensity histogram [Fig. 1(d), red squares]. We note that
the long tailed intensity histograms of super-Rayleigh
speckles result from redistribution of the intensity among
the speckle grains and not because of fluctuations in the
total intensity of different speckle realizations. To verify
this, we normalize all the speckle patterns to have the same
total intensity, and show that the intensity histograms of
the normalized and non-normalized patterns are identical
[Fig. 1(d), solid lines].
The super-Rayleigh speckle statistics arises from con-

centrating the light to a fewer bright grains compared to
Rayleigh speckles. It is interesting to explore the opposite
regime which we coin sub-Rayleigh speckles, where the
light is distributed in a more homogenous manner among
the grains. Intuitively, saturation of the intensity can reduce
the intensity fluctuations and the speckle contrast, while
preserving the granular structure of the speckles. Thus, we
use a nonlinear transformation that saturates the amplitude
of a Rayleigh speckle, but keeps its phase untouched,

hðERayÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−jERayj2

p
eiθRay , where θRay ¼ argðERayÞ is

the phase of the Rayleigh speckle field. Unlike super-
Rayleigh speckles, where we applied to the SLM the phase
of the inverse Fourier transform of hðERayÞ and observed a
pattern that to a good approximation matched hðERayÞ, for
sub-Rayleigh speckles when we keep only the phase of the
inverse Fourier transform of hðERayÞ and disregard the
amplitude variation, we observe nearly standard Rayleigh
speckles. This is because the amplitude modulation enc-
odes much information of the transformed speckle. To
transfer this information to phase modulation, we apply an
iterative procedure based on the Gershberg-Saxton algo-
rithm [37], where using Fourier transforms we numerically

FIG. 1 (color online). Experimental generation of super-
Rayleigh speckles. (a)–(c) Images of the speckle patterns at
the Fourier plane of the SLM, and (d) the corresponding intensity
distribution function. (a) Standard Rayleigh speckles with a
contrast of C ¼ 0.98 and a negative exponential intensity
distribution [(d), blue triangles]. (b) Super-Rayleigh speckles
with a contrast of C ¼ 1.28, and an intensity distribution that
decays slower than the negative exponential [(d), green dia-
monds]. The light is concentrated at a fewer speckle grains
compared to (a), resulting in an enhanced probability to detect
high intensities. (c) Higher contrast super-Rayleigh speckles with
C ¼ 2.79 and a long tailed intensity histogram [(d), red squares].
Solid lines are histograms obtained for the normalized speckle
patterns (see text).
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propagate the field back and forth between the SLM plane
and the Fourier plane. At each iteration step we fix the

amplitude at the Fourier plane to be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−jERayj2

p
, and we

set the amplitude at the SLM plane to match the amplitude
of the beam profile that impinges on the SLM. After 50
iterations the algorithm converges to a speckle pattern at the
Fourier plane with an intensity pattern that is proportional
to 1 − e−jERayj2 and a corresponding phase matrix at the
SLM plane. We repeat the algorithm with different initial
Rayleigh speckles ERay to generate a set of a phase
matrices, which we then send to the SLM. The recorded
patterns indeed show a low contrast (C ¼ 0.77), and the
intensity histogram decays faster than a negative exponen-
tial (Fig. 2). By comparing Fig. 2(a) to Fig. 1(a), it can be
seen that intensity distribution among the speckle grains of
the sub-Rayleigh speckles is more homogenous, which is
the origin of the lower contrast.
One interesting feature of the non-Rayleigh speckles is

that the speckle statistics change as the beam propagates.
All the results presented so far were measured at the Fourier
plane of the SLM; however, when we scan the image plane
away from the Fourier plane, the speckles gradually return

to Rayleigh statistics [36]. Figure 3 shows the contrast of
the recorded speckle patterns as a function of the distance
between the Fourier plane and the plane that is imaged by
the camera, showing that the contrast of the super-Rayleigh
and sub-Rayleigh speckles is axially dependent, whereas
the contrast of the Rayleigh speckle remains constant. The
range over which the non-Rayleigh statistics are observed
corresponds to the longitudinal length of a single speckle.
This longitudinal length is equal to the Rayleigh range of an
input Gaussian beam that is focused to a spot of the size of a
single speckle [38]. It is therefore determined by the
envelope of the beam that illuminates the SLM, and it is
not modified by phase-only modulation.
Observing non-Rayleigh statistics necessarily implies

that the fields at the SLM plane break at least one of the two
conditions for observing Rayleigh speckles: either the
phases are not uniformly distributed over 2π, or the fields
at different pixels are correlated. Figure 4(a) shows the
histograms of the phases that were used to generate
Rayleigh speckles (blue triangles), super-Rayleigh speckles
(green diamonds), and sub-Rayleigh speckles (red squares).
All three histograms are constant over ½0; 2π�, which
means that the non-Rayleigh statistics must originate
from correlations between the SLM pixels. We therefore
look at the correlation of the field at the SLM plane

Gð1Þ
SLMðΔx;ΔyÞ ¼ hESLMðx; yÞE�

SLMðxþ Δx; yþ ΔyÞi. We

obtain Gð1Þ
SLM using the generalized van Cittert–Zernike

theorem [4] by computing the Fourier transform of the
average intensity pattern at the Fourier plane of the SLM.

The Gð1Þ
SLM curves for super- and sub-Rayleigh speckles are

presented in Fig. 4(b), showing that fields at different
macropixels are uncorrelated. The question is then how can
uncorrelated fields with phases that are uniformly distrib-
uted over 2π yield non-Rayleigh statistics? The answer is

FIG. 2 (color online). (a) A speckle pattern measured at the
Fourier plane of the SLM, using a phase matrix that was designed
to generate sub-Rayleigh speckles. The low contrast of the pattern
results from a more homogenous distribution of the intensity
among the speckle grains compared to Rayleigh speckles.
(b) Measured intensity distribution function of the sub-Rayleigh
speckles (green diamonds), which decays much faster than
the negative exponential observed for Rayleigh speckles (blue
triangles).

FIG. 3 (color online). Axially dependent speckle contrast.
(a) The measured contrast of the speckle patterns versus the
distance from the Fourier plane, for Rayleigh (blue dashed line)
and super-Rayleigh (red line) speckles. (b) Same as (a) for sub-
Rayleigh speckles. The width of the contrast peak or dip
corresponds to the longitudinal length of a single speckle.

FIG. 4 (color online). (a) Histograms of the phases used to
generate Rayleigh (blue triangles), super-Rayleigh (green dia-
monds), and sub-Rayleigh (red squares) speckles. All three
histograms are constant over 2π. (b) The field correlation at
the SLM plane Gð1Þ

SLM for super-Rayleigh speckle (blue dashed
line) and sub-Rayleigh speckle (red solid line). d ¼ 80 μm is the
size of 1 macropixel. Fields separated by more than 1 macropixel
are uncorrelated, indicating that the source of the non-Rayleigh
statistics is in higher order correlations. The inset shows the
average intensity for the sub-Rayleigh speckles, from which
Gð1Þ

SLM was computed.
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that Gð1Þ
SLMðΔÞ ¼ 0 indicates that fields separated by a

distance Δ are uncorrelated, but it does not necessarily
mean that the fields are statistically independent. For non-
Gaussian random fields, higher order correlations can exist
even if the first order correlation vanishes [39].
To investigate the role of higher order correlations in the

formation of non-Rayleigh speckles, we study numerically
the contribution of the second-order field correlations to the
contrast of the speckle patterns. Since the laser beam is
linearly polarized and the scattering angles from the SLM
are too small to introduce radial polarization, we consider
scalar fields. A partial wave that diffracts from an SLM
pixel at position r to position ρ in the Fourier plane is
proportional to eiðψ r−2πρr=λfÞ, where ψ r represents the SLM
phase at r, λ is the optical wavelength and f is the focal
length of the lens that performs the Fourier transform. The
square of the contrast of the speckle pattern at the Fourier
plane is, therefore,

C2 ≡ hI2i − hIi2 ¼
�Z

d2ρjEðρÞj4
�

e
− 1

¼ 1

N2

X
r1;r2;r3r4

heiðψr1
þψ r2

−ψr3
−ψ r4 ieδr1þr2−r3;r4 − 1; (1)

where N is the number of SLM pixels, h� � �ie denotes
ensemble averaging, and hIi is normalized to 1. The sum on
the right-hand side is in fact a sum over the second order
correlation between the fields at all the SLM pixels:P

Gð2Þ
SLMðr1; r2; r3; r1 þ r2 − r3Þ. We can decompose this

sum into 4 terms, C2 ¼ Γð2Þ
1 þ Γð2Þ

2 þ Γð2Þ
3 þ Γð2Þ

4 − 1,

where Γð2Þ
p is the second order correlation between

fields at p different pixels, e.g., Γð2Þ
4 ¼ P

r1≠r2≠r3≠r4×

Gð2Þ
SLMðr1; r2; r3; r1 þ r2 − r3Þ. For Rayleigh speckles that

are formed by statistically independent pixels, only
correlations of fields at the same pixel contribute to the

sum, hence, Γð2Þ
1 ¼ 1=N, Γð2Þ

2 ¼ 2 − 2=N and Γð2Þ
3 ¼

Γð2Þ
4 ¼ 0. For non-Rayleigh speckles, we evaluate Γð2Þ

p

numerically by calculating the second order correlations

Gð2Þ
SLMðr1; r2; r3; r4 ¼ r1 þ r2 − r3Þ for all the combinations

of the indices fr1; r2; r3; r4g, and decomposing the results

into the four terms Γð2Þ
p according to the number of different

indices that appear in each combination. The numerical
results for 5000 phase patterns with 100 pixels are
summarized in Table 1. It is seen that the source of the

non-Rayleigh statistics is Γð2Þ
4 , i.e., the cross correlation

between four different pixels.
In Eq. (1) the high order correlations of the field at

the SLM plane are linked to the intensity statistics at the
Fourier plane. However, for points that are not in the
Fourier plane an additional quadratic phase factor
eiπzðr

2
1þr22−r23−r24Þ=λf2 multiplies each term in the right-hand

side of Eq. (1), where z is axial to the distance from the
Fourier plane. Because of this quadratic phase the high
order correlations do not add in phase and their contribution
to the intensity statistics vanishes. This is the reason why
we observe non-Rayleigh statistics only at the Fourier plane
of the SLM.We note that by adding a quadratic phase to the
SLM it is possible to shift the axial position of the Fourier
plane where the speckle statistics is non Rayleigh.
In conclusion, we developed a method to generate

speckle patterns with controlled intensity statistics. In
contrast to previous works that used an SLM to control
the spatial coherence of light fields by shaping the spatial
frequency distribution [40–42] or synthesizing the coherent
mode decomposition of the field [43], we use the SLM to
redistribute the intensity among the speckle grains. We link
the observed non-Rayleigh statistics to higher order corre-
lations of the scattered partial waves, paving the way
towards a better understanding of the information carried
by speckles that are scattered from disordered samples with
structural correlations. Non-Rayleigh speckles also offer
new opportunities for speckle illumination applications. On
one hand, the axially varying contrast of super-Rayleigh
speckles can be utilized for achieving better optical
sectioning in speckle illumination microscopy. On the
other hand, the homogenous distribution of sub-Rayleigh
speckles are attractive for imaging modalities that utilize
speckle illumination, as it can reduce the number of
projections required for averaging the speckles to observe
a smooth image and enhance the image acquisition rate.
Therefore, tailored speckles allow optimizing the intensity
statistics for target applications.
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