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Optical mushroom-shaped billiards offer a unique opportunity to isolate and study semiclassical modes

concentrated on nondispersive, marginally unstable periodic orbits. Here we show that the openness of the

cavity to external electromagnetic fields leads to unanticipated consequences for the far-field radiation

pattern, including directional emission. This is mediated by interactions of marginally unstable periodic

orbits with chaotic modes. We also show that the semiclassical modes are robust against perturbations to

the shape of the cavity, despite the lack of structural stability of the corresponding classical orbits.
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The study of chaotic billiards has served as a foundation
for many areas, ranging from nonlinear dynamics and
statistical physics to quantum optics. Classically, the phase
space of a chaotic billiard, defined by its position and
momentum variables, is typically divided into chaotic
and regular regions, which is a property found in generic
Hamiltonian systems. However, in contrast with smooth
dynamical systems, several billiards have been shown to
have families of marginally unstable periodic orbits
(MUPOs) embedded in their chaotic regions [1]. These
orbits, of which bouncing-ball orbits [2] form a particu-
lar case, are zero-volume structures reminiscent of
Kolmogorov-Arnold-Moser islands and dynamically indis-
tinguishable from regular orbits [3]. Of the billiards exhib-
iting this property, no other is attracting as much attention
as the mushroom-shaped billiards [4].

Mushroom billiards have the distinctive nongeneric fea-
ture of exhibiting a single chaotic and a single regular
region [4]. These billiards have been used as a model to
address the impact of MUPOs on chaotic orbits [1,3,5] and
to examine quantum tunneling [6–9]. Yet, the fundamental
role of MUPOs in semiclassical dynamics remains largely
unexplored. The very physical reality of semiclassical
MUPO modes remains to be demonstrated given that clas-
sical MUPOs are not structurally robust against parameter
perturbations likely to be present in realistic situations
[3,10].

In this Letter, we investigate a family of MUPOs in
optical dielectric mushroom cavities. Previous studies
have used total internal reflection to identify lasing modes
based on stable [11,12] and unstable periodic orbits [13] in
chaotic cavities, where the latter correspond to the so-
called scarred modes. In both cases the orbits of interest
may not correspond to the least leaky modes of the passive
system, but give rise to lasing modes via manipulation of
the gain medium. In contrast, here we show that even in the
absence of gain, total internal reflection can be used to trap
selected MUPOs inside the billiard. All the other orbits
leave the cavity through refraction, making the MUPO

modes the least leaky modes. We explore computationally
the consequences of this scenario in the semiclassical
regime (i.e., short-wavelength regime). We show that the
reentry of electromagnetic fields into the cavity leads to a
coupling between MUPOs and chaotic modes, which has
no analogue in closed billiards and significantly impacts
the directionality and intensity of the far-field radiation
pattern. We also show that the semiclassical MUPO modes
are robust against roughness and other perturbations to the
geometry of the billiard.
We consider mushroom billiards composed of a circu-

larly shaped hat with radius R and a square or triangular
foot that extends to a radial position of r (Fig. 1). Regular
orbits are confined to the hat between the circumferences
of radii r and R. MUPOs are also confined to the hat but
necessarily cross the circle of radius r, while chaotic orbits

FIG. 1 (color online). Bottom corner of the hat of the mush-
room cavity. The ray represents the trajectory of an orbit with
reflection angle � ¼ 90� � � that hits the undercarriage with
angle �0 � �. When close to the corner, the curvature can be
ignored and �0 ¼ �. The inset shows a period-4 MUPO and the
entire mushroom cavity with the parameters R, r and hmeasured
from the center of the diameter of the hat. This point is also the
origin of the cylindrical and Cartesian coordinates used through-
out this Letter, in which z represents the axis perpendicular to the
plane of the billiard.
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necessarily visit the foot [4]. In the phase space (defined by
the coordinates of arc length and reflection angle in the
circumference of the hat), the regular and chaotic regions
are separated by the reflection angle �� ¼ sin�1ðr=RÞ
[4,5]. The MUPOs have a reflection angle lying in the
chaotic region (� < ��) but have null Lyapunov exponents,
assuring a nondispersive behavior for nearby trajectories.
An infinite number of families of MUPOs, characterized by
different periods and rotation numbers, have been shown to
exist for almost all choices of r=R [1,5]. Here we focus on
the particular family of period-4 MUPOs (Fig. 1), which

exist for r=R > 1=
ffiffiffi

2
p

and have a reflection angle �p ¼
45�.

These MUPOs can be trapped and isolated in an open
mushroom cavity with certain refractive index n by ex-
ploiting the critical incidence angle �c ¼ sin�1ð1=nÞ be-
low which light escapes the cavity. Isolating the target
MUPOs requires that all chaotic and regular modes leave
the cavity. The former is easily accomplished since chaotic
orbits will eventually have a reflection angle smaller than
the critical angle, as in previous applications to select
stable modes in chaotic resonators [11]. The latter, on the
other hand, can be accomplished by forcing the regular
orbits to escape through the ‘‘undercarriage’’ (bottom of
the hat), as demonstrated next.

Figure 1 shows the trajectory of an orbit. If the reflection
is close to the corner, the curvature of the hat can be
ignored and �0 ¼ �. The MUPOs and index n are chosen
such that the reflection angle �p satisfies �p > �c and

�0
p ¼ 90� � �p > �c. We also want a cavity in which

�0
regular < �c. The smallest reflection angle for any regular

orbit in the mushroom cavity is ��. Therefore, our con-
ditions become 90� � �� < �c < 90� � �p and �c < �p.

We shall consider two commonly used materials in
microcavity fabrication: polymer and semiconductor
(Table I). We first focus on polymer, which has index n ¼
1:5 and critical angle �c � 41:8�. We assure 90� � �� <
�c by taking r=R ¼ 0:75, which yields 90� � �� � 41:4�.
Thus, since �p ¼ 45� > �c, our conditions are met and the

period-4 MUPOs will be isolated in the cavity.
The above argument assumes we are in the classical

regime and is expected to be approximately valid in the
semiclassical regime considered here, which is character-
ized by nkR � 1 and hence small wavelengths � ¼ 2�=k
compared to the size R of the cavity. We set the parameters
of the cavity to be R ¼ 10 �m, r ¼ 7:5 �m, and h ¼
7 �m. We consider TE polarization (Ez ¼ 0) and employ
a parallel version of the finite-difference time-domain

(FDTD) method [14] in 2D with grid spacing of �x ¼
�y ¼ 1:36 nm for a square grid in the plane of the cavity.
The cavity is excited uniformly with a sinusoidal-Gaussian
pulse and the simulation run until only the eigenmodes
with the highest Q � !=� remain, where ! is the angular
frequency and � is the energy decay rate of each eigen-
mode. The eigenmodes are determined by a Fourier trans-
formation of the energy in the cavity. A wide range of
excitation wavelengths were simulated before arriving at
the highest Q profile for � ¼ 41:0 nm. The high Q modes
are limited to such small wavelengths most likely because
of the distance the MUPO modes are restricted to traveling
in the corner of the mushroom hat.
For our far-field analysis, the complex field outside the

cavity as a function of angle� at radial distance � from the
center of the diameter of the hat is expressed as Hzð�Þ ¼
P

mamHmðk�Þeim�, whereHm is the Hankel function of the
first kind with azimuthal order m. The coefficients am are
found by applying 2�amHmðk�Þ ¼ ��

P

jHzð�jÞe�im�j ,

where �j is the angle discretized with a resolution ��.

The far-field pattern jHf
z ð�jÞj2 is obtained by evaluating

the field at a far-field distance �f determined by the

Fraunhofer condition �f � R2=�. Because FDTD only

calculates the real component of the field, we obtain the
imaginary component from Faraday’s law ImHz ¼
ð�!�0Þ�1r� E, where E is real.
Figure 2 color codes the field intensity for a polymer

cavity with a triangular foot. The highest Q mode is in this
case a single period-4 MUPO mode with � ¼ 41:0 nm. A
fit to the monoexponential curve of energy versus time
yields a decay rate � that results in Q ¼ 13 000. This
eigenmode was isolated by narrowing the excitation width
to 	� ¼ 0:005 nm. In closed billiards, the shape of the foot
does not play a crucial role. In open cavities, however, the
shape of the foot can significantly influence the dynamics
of modes. This is particularly so for polymer cavities since

TABLE I. Parameters of the materials, period-4 MUPOs, cav-
ities, and FDTD grid spacing considered.

n �c �p �� r=R h=R �=ðn�xÞ
Polymer 1.5 41.8� 45� 48.6� 0.75 0.70 20

Semiconductor 3.3 17.6� 45� 46.9� 0.73 0.68 20

FIG. 2 (color online). Spatial intensity jHzj2 for the period-4
MUPO mode with � ¼ 41:0 nm and Q ¼ 13 000 in a polymer
microcavity. The intensity was averaged over one oscillation
period.
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their modes are prone to leak. For example, transitioning
from a triangular foot to a square foot results in theMUPOs
no longer being the highest Q modes [15]: new high Q
modes are established via leakage from the undercarriage
and subsequent penetration into the foot. This is expected
to be relevant to optical experiments because the highestQ
mode typically determines the first lasing mode. More
strikingly, when the MUPO remains the highest Q mode,
as in Fig. 2, field reentry can lead to directional emission.

Figure 3 shows the far-field pattern generated by the
period-4 MUPO mode shown in Fig. 2. The emission
pattern is strongly bidirectional, with peaks at approxi-
mately 10� and 170�. The percentage U of total emission
within ½8:5�; 11�	 [ ½169�; 171:5�	 is U � 25%, which is
18 times the corresponding value for isotropic emission.
Some of the field leakage is through evanescent fields.
Evanescent fields outside the cavity near the corners and
at the top of the hat experience significant diffraction. In
neither case is there a significant contribution to the pri-
mary peaks of the far-field pattern.

The directional emission is actually caused by refraction
through the undercarriage and subsequent penetration into
the foot. As suggested in Fig. 2 and confirmed in Fig. 4, this
is so because part of the MUPO’s field strikes the boundary
farther up the hat and hits the undercarriage with an
incidence angle �0 & �c. The field then refracts out of
the cavity towards the foot. As the field enters the foot, it
is refracted upwards to the boundary of the hat and imme-
diately escapes. Figure 4(a) shows the corresponding clas-
sical trajectory with d marking the ray’s incident location
on the undercarriage, 
 the upward angle of refraction
once the ray reenters the cavity, and � the emission angle.
Figure 4(b) shows the values of �0 and d that traced along
this trajectory satisfy 8:5� � � � 11�. Only incidence
angles close to the critical angle—with �0 ¼ 38� being
the minimum value found—result in emission angles
agreeing with the far-field pattern shown in Fig. 3.
Moreover, the smallest incidence angles only result in
agreement when d > 8:8 �m, which is consistent with
Fig. 2 in that the mode is concentrated in the corner of
the hat. A measurement of the reentry angle from the Fig. 2
data gives 
 � 13:5�, which is also consistent with the
calculation of 
 in Fig. 4(b).

We now turn to semiconductor microcavities. As shown
below, they have highQmodes in the optical range and can
be used to further validate the mechanisms found in the
polymer cavity. With a refractive index n ¼ 3:3, the semi-
conductor has a smaller critical angle of �c � 17:6�, mak-
ing this cavity less leaky than the polymer cavity. We
consider this case for R ¼ 10 �m, h ¼ 6:8 �m, and r ¼
7:3 �m, so the period-4 MUPOs are located just inside the
chaotic region; we use a grid spacing of �x ¼ 8:3 nm and
continue to focus on TE polarization (Table I). One of the
conditions for isolating the MUPO modes is no longer
satisfied, namely 90� � �� ≮ �c, meaning that some of
the regular orbits never reach the undercarriage with inci-
dence angle smaller than �c. Nevertheless, because their
incidence angles are farther apart from the critical angle by
at least �� � �p ¼ 1:9�, the period-4 MUPOs remain the

highest Q modes.
With an excitation wavelength of � ¼ 580
 25 nm,

the highest Q eigenmodes are excited in the range
500 nm< �< 600 nm and are all found to be period-4
MUPO modes irrespective of the foot shape. A harmonic
inversion software [16] was used to estimate the Q values.
The highest Q modes were selected and simulated indi-
vidually for a more accurate estimate ofQ. A MUPOmode
at � ¼ 598 nm has Q ¼ 34 000 while a MUPO mode at
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FIG. 3 (color online). (a) Far-field radiation pattern jHf
z ð�jÞj2

for the high Q period-4 MUPO mode shown in Fig. 2.

(b) Magnification of jHf
z ð�jÞj2 for 0� � � � 30�. The far-field

pattern is strongly bidirectional. The angular resolution is �� ¼
0:008�.
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FIG. 4 (color online). (a) Calculated ray diagram indicating
the point of incidence on the undercarriage d, reentry angle 
,
and emission angle� in a mushroom cavity. (b) Values of �0 and
d that result in emission angles 8:5� � � � 11� (shaded area).
The corresponding values of 
 (black curve) agree with the
results shown in Fig. 2.
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FIG. 5 (color online). (a) Fourier transformation for the
period-4 MUPO modes excited by � ¼ 550:92
 0:5 nm in a
semiconductor microcavity. There are two eigenmodes within
this excitation range, at wavelengths � ¼ 550:61 nm and � ¼
550:91 nm. The Q values for these modes are 39 000 and

140 000, respectively. (b),(c) Far-field pattern jHf
z ð�jÞj2 corre-

sponding to (b) � ¼ 550:61 nm and (c) � ¼ 550:91 nm.
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� ¼ 526 nm has Q ¼ 160 000. Two eigenmodes with in-
termediate wavelengths identified in Fig. 5(a), at � ¼
550:91 nm with Q ¼ 140 000 and at � ¼ 550:61 nm
with Q ¼ 39 000, are chosen for further investigation.
These two modes are representative of the typical behavior
found for the semiconductor cavity. As shown in Figs. 5(b)
and 5(c), the corresponding far-field pattern is close to
isotropic for � ¼ 550:61 nm and slightly bidirectional
for � ¼ 550:91 nm.

Figure 6 shows the spatial intensity for these modes. The
lowQmode at � ¼ 550:61 nm is concentrated close to the
corner of the hat [Fig. 6(a)]. The evanescent field strongly
diffracts at the corner resulting in a nearly isotropic far-
field pattern. This case is similar to the one in Fig. 2 and
provides further evidence that the directionality in the
polymer microcavity originates from field reentry and
subsequent refraction as opposed to direct refraction or
diffraction of evanescent waves. The high Q mode at � ¼
550:91 nm, on the other hand, is concentrated much closer
to the intersection of the undercarriage and the foot,
and hence has less leakage from diffraction at the corner
[Fig. 6(b)]. The slight bidirectionality of the high Q mode
observed in Fig. 5(c) is caused by scattering of the field
near the intersection.

The robustness of the high Q period-4 MUPO mode
shown in Fig. 6(b) was tested by rounding the corners of
the cavity with a radius of curvature RE and by introducing
roughness to the radial boundary of the hat and under-
carriage. The latter is defined by a standard deviation A and
modulation period D. As RE, A, or D increase, Fourier
transformations reveal that the wavelength of the MUPO
mode changes little. The largest roughness for which the
MUPO mode is not destroyed is for A ¼ 9 nm and D ¼

40�. Even in this case, the resulting wavelength shift was
just 0.01%. Similar or even more pronounced robustness
was observed for the directionality of the far-field pattern
of the highest Q mode of the polymer microcavity [15].
However, the Q values proved quite sensitive to the per-
turbations. For the case of Fig. 6(b), the Q value reduces
from 140 000 to 73 000 for RE ¼ 300 nm and toQ ¼ 3200
for A ¼ 9 nm and D ¼ 40�. Nevertheless, the spatial in-
tensity pattern of the MUPO mode is fairly well preserved
in all cases considered. Unlike the classical case, where a
MUPO either exists or does not exist, the semiclassical
MUPO mode changes with the perturbations but mimics
the unperturbed MUPOs for the entire lifetime of the
mode.
MUPOs are inherently less dispersive than unstable

periodic orbits and, as shown here, underlie modes that
can be isolated and trapped in open optical cavities. The
openness and nonconvexity of the cavity, and consequent
reentry of refracted fields, can lead to directional emission,
fundamentally altering the far-field radiation pattern. The
recently demonstrated prevalence of MUPOs in many
billiards [1] indicates that these findings are most likely
not limited to the mushroom billiards considered in this
Letter.
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FIG. 6 (color online). (a),(b) Spatial intensity jHzj2 for the
period-4 MUPO modes at (a) � ¼ 550:61 nm, Q ¼ 39 000 and
(b) � ¼ 550:91 nm, Q ¼ 140 000 in a semiconductor micro-
cavity. The intensity was averaged over one oscillation period.
Different times were selected to yield the same maximum
intensity for both plots.
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