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Non-Markovian correlation spectra and quantum stochastic trajectory analysis
of spontaneous emission of an excited two-level atom
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The non-Markovian correlation spectra of spontaneous emission of an excited two-level atom are derived
including the effect of finite size of the atom and all the possible contribution of allowed multipole radiations.
The emission process is then analyzed by the quantum stochastic trajectory approach. The non-Markovian
effect is counted in by expanding the original system to an enlarged system with Markovian reservoirs. In the
case of a hydrogenlike atom with large atomic numbBgthe deviation from the Weisskopf-Wigner result is
quite evident.
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[. INTRODUCTION wavelength was introduced to avoid divergence of the inte-
gral with respect to the wave vector. In their numerical cal-
The spontaneous emission of an excited two-level atom isulation the ratioy,/w is taken as large as 0.1, wheug is
an old question in quantum theory. In the year 1930, Weisthe atomic transition frequency ang is the corresponding
skopf and Wignef1] in their investigation of atomic spectra EinsteinA coefficient. For such a large value gf/ wo, apart
connected a Lorentzian line profile with exponential decay ofrom its lack of reality, the restriction to the pointlike electric
an upper-'eve' popu|ati0n of the atom. In the fo”owing, we dlpOle trans|t|0n, as .We show in the fO"OW|ng, is irrelevant.
shall call the exponential decay with the Einstéircoeffi- In the 1990s, a kind of new method known as the quan-
cient as decay rate the Weisskopf-Wigner result. Agaf&Agl tum SFOChaStIC trajeptory approafh] and other related sto-
and Ackerhalt and Eberly3] presented a fully quantum- chastic wave equation approaches were develgfed] to
electrodynamic treatment of the spontaneous emission wit eat the_ open system. In th|s_pape_r the StOChaS.t'C trajectory
the aid of the Markov approximation. Agarwal worked on ormulation W'” b_e gdopted, in which the solution .Of the
the master equation of the atom density operator, while AckmaSter equation s f|rst.expressed as a sum of various pos-
erhalt and Eberly did their calculation in the Heisenberg pic-SIble quantum trajectorief5], and then this summation is
: . . . "~ calculated by a type of Monte Carlo treatment, namely, the
ture. Both calculations resulted in the Weisskopf and W,'gnersummation is transformed to the ensemble average of so-
X i : ) %alled stochastic guantum trajectories. This approach has
necessarily true in general. qu stronger co_upllng, as in thgeen applied to wide classes of problems. However, its ap-
case of a hydrogenlike atom with large atomic numbehe  pjication to a strongly interacting system is seriously limited
instaneous decay rate may depend on the history of the Prgyy its Markov approximation.
cess and hence the process is non-Markovian. Moreover, ne- a few years ago, Imamoglu and co-workers developed a
glecting the finite atom-size effect and restriction to e|eCtriCprocedure[9,10] to extend the application range of the sto-
dipole transitions may also become improper. ~ chastic approach to a large class of non-Markovian pro-
Carrazana and Vetf#] studied non-Markovian effects in  cesses. Their procedure is based on the recognition that a
the spontaneous decay of the atomic population difference igjyen non-Markovian process of certain type can be embod-
1980. They first derived a master equation for the spontange jn an enlarged Markovian process. Specifically, the origi-
ous emission process without the Markov approximationpg| system is expanded by introducing additional fictitious
and then arrived at a closed equation §or(t)), the popu-  harmonic oscillators which interact on the one hand with the
lation difference, in the Born approximation and in the original system and on the other hand with their own reser-
rotating-wave approximation. This equation was studied subvoirs of vanishing correlation time, namely the enlarged sys-
sequently by means of the Laplace transformation. But item has Markovian reservoirs. It is well known that the pair
their approach the atom is actually taken as a pointlike elecef conjugate operators of a harmonic oscillator interacting
tric dipole, so that the finite-size effect and all higher allowedwith a Markovian reservoir will correlate with each other by
multipole contributions are neglected; in addition, a cutoffa finite interval of order of their decay time; hence they will
serve as effective non-Markovian reservoirs to the original
system they couple with. Through proper selection of the
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also capable of treating a non-Markovian process in a sysg. .+ Eliminate the operator&kj andélj by taking the elec-

tt)eaz]ggco:\vzy([jlels]crrzinpcr)?aﬁzeg sstt:rzhft: d‘éﬁﬁgihmb';gomagnetic (e.m) fields as reservoir; the resultant
P y ifferential-integral equations are

space. Non-Markovian effects in the dynamics are then
treated by employing the time-convolutionless projection op- 4 t A A A R
erator technique. T (t)—f u(t—t")og(t)o_(t")dt' —o3(t)2(1),
In this paper we shall adopt the former non-Markovian 0
approach, since we find that it is possible to simulate the (33
non-Markovian reservoir in our problem by just a few ficti- .
tious oscillators, which makes the numerical task rather easy. __ A S INHY oA S
The non-Markovian approach is known to be essential for dta 3(V ZJ u(t=t)o, (o (1)dt'+ 20 (H2 (1)
describing the dissipative dynamics of electrons or excitons
in semiconductors. Now we will show that even in the spon-
taneous emission of a hydrogenlike atom with large atomic
numberZ the deviation from Weisskopf-Wigner decay is also Wherea is the atom population-difference operator, and
evident.
The first important thing for this investigation is then to Sty — A —i(@—wg)t
derive the non-Markovian spectruR(w) of the correlation =M E 92 (0)e ’ (30
functions for atomic spontaneous emission. We shall do this
without the pointlike electric dipole transition approxima- is the fluctuation force operator.
tion. Then the quantum stochastic trajectory approach is used The correlation function in the above differential-integral
to study the non-Markovian correction to the decay of theequations is expressed by
atom upper-level population. No cutoff wavelength is needed
in our formulati(_)n. In the case of “allowed transition,” we Ut—t") =S |gyi|2e i@ @o-t)
see that corrections actually come from two factors. The first < 19Kj
is the difference betweeniR(w,) and the Einsteir\ coef-
ficient y», which means that, if one still makes the Markov _ me(w)e“(‘“‘wo)(t‘t')dw, (4a)
approximation but on the basis of the real correlation spec-
trum, the resultant exponential decay is still quite different
from the Weisskopf-Wigner result. The second factor is thein which
nonwhiteness oR(w), namely, its deviation fronR( ).

+H.c., (3b)

2

ehw
_ J2— “ 2
Il. THE REAL SPECTRUM OF THE CORRELATION R(w)= (2m) 2 ko; |9 4W2m2C3f dL[ Gyl
FUNCTION FOR SPONTANEOUS EMISSION
OF A TWO-LEVEL ATOM —|ne-Gyl?]. (4b)

The A-P type Hj,; for the spontaneous emission of a |y the case of spontaneous emissic{@kj(O)éE, (0))g
two-level atom in the rotating-wave approximation is known _ = 648+ and all other pairs have zero expectatlon value:

to be hence no additional correlation function will stem from the
fluctuation force.
Hin(1)= mz [gkj0+(t)akj(t)_g:ja'f(t)alj(t)] ) If the Markov ap.proximaf[ion is_ made on the real spectrum
K,j R(w), the correlation function will reduce to

wherea,; (a;;) is the photon annihilatiofcreation operator u(t—t")=(y+i28wgy) 8(t—t'). (5a)
of mode ,j), ando. are atom-level change operators,(

corresponds to upward change amd to downward From Eq.(48 one may obtain that the value gfis given by

changg. For a hydrogenlike atorgy; is given by y=27R(wy). (5b)
gei=— — 2mh .G Physically,y represents the whole transition rate contributed
ki Vkcth Pk by all allowed multipole(including dipolé radiations and

with finite atom size effect included; taking= w, means

3 Kexernt 3 that the photon energy is equal to the energy difference of the
Gk_f e W (x) VW (x)d°), (20 atomic levelsdw, represents the frequency shift of the atom
level, but its value obtained by our simple model has no
in which &; is the polarization vector of photon mode,{), ~ meaning and hence it will be omitted.

and ¥ ,(x) and ¥,(x) are the upper-level and lower-level ~ Correspondingly,
wave functions, respectively. The dynamical equations for L
both atom and photon variables are easily deduced from (SMST(t"))y=ys(t—t"). (50
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In this case one still obtains exponential decay of the upperand also the expansion formula

level population/N,(t)), but the decay constant ig not the
EinsteinA coefficienty, . The latter represents the transition
rate contributed by pointlike electric dipole radiation.

In the usual estimation, the characteristic correlation time .
of u(t—t") is of order 27/ wy while the decay time of atomic Into Eq.(2) and making use of the formula
variables is of order 3/; hence for the Markov approxima- I +1[dfy(r)
tion to be valid 27/wy should be much less than i/ VI, (x)=— —_—
namely, 2ry/wy<1. More precise information can only be
learned from the solution of the differential-integral equa-
tions (3a) and (3b) or of an equivalent master equation.

As a first step we calculate the coupling consggt For
simplicity, we omit the spin of the electron. Substituting the
wave function

V() =F2(N) Y m, (@),  Wa(x)=F5(r)Y) m,(0¢)

e x=am > kD) Yin( G Yin(09) (6

Iy
o +1 dr 7o)

[0, [dfy(r) 1,+1
* 21,+1] dr e

XTp 1, -1m, (09), )

Ti,+1m, (69)

whereT;,(0¢) is the vector harmonics, one geg after
integration overd,, ¢y:

G=(—1)"2/ 477(2|2+1)2 Yim( ke[ — V(1 +1) (211 +3){A(w) —11B{(w)}C(I;+1,1)1;my
2|1+1 |m,U- N

21+1

= i,y C(l+ 105, 1my — w, —my,m)C(l,+15,1;0,0,00 + V141(21; — D{A () + (1, + 1)Bj(w)}
XC(ly=1,1) 1 5my— e, u,my) C(1 =15, 1;my — g, —my,m)C(1, - 15,1;0,0,0]n,,, (8a)

in which C(I;+1,1)1;m;—u,u,m;), etc., are Clebsch- To see these spectral functions explicitly, we consider a
Gordan coefficientsp,, (u=+1,0,—1) are spherical bases simple examplel';(x) and W,(x) are Schrdinger wave
functions with quantum numbersn{=11,=0) and .,
=2l,=1m,=1), respectively, expressed by

1
N, = n,+in,), Ng=nN3, n_;=—=(n;—in
+1 \/E( 1 2) 0 3 1 \/E( 1 2)

(8b) 1 a 4
Vi(x)= \/——N1e Lo Ng=\/3 (108
satisfying the relations am a
n=(—=L*n_,, n,-n,=6,,, 4
W,o(x)=Nore” "22Y,(0¢),  Np=\/——. (10b
and 3a;
A(w)= foorzh(gr)fz(r) dfa(r) dr, (80) The corresponding transi_tion is an allqwed transitior_w, SO we
0 c dr can compare our result with that of Weisskopf and Wigner. In
this simple case, the gradient @f;(x) is given by
o] i w
B|(w)=f i —r | fa(r)fa(r)dr. (8d)
0 ¢ - 1 —rla
V‘Pl(X)Z—\/TNla—le in, (11
v

The summation in Eq8a) actually contains only finite terms
because of the angular momentum addition rule. For the first . . ) )
term in the square bracketsjs restricted to the rang,  Wheren: is the unit vector along and is expressed in the
—1,—1|<I<l,+1,+1, and for the second term to the range SPherical bases as

[l,—1;+1|<I<I,+1,—1. SubstitutingG, and the formula

4
\/@ . n,= \/?% (D", (6e)n_,, p=+1,0-1.
Ng= ?g YOy, C) (12)

into Eq. (4b) and carrying out the integration ovéf, and  Substituting these formulas and E§) into Eq.(2) and car-
¢k, one may obtain the spectral functi®iw) immediately.  rying out the angular integration, one obtains
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— Rlw)
0.0010 ©
e R (@)
7,/ ©,=0.001
0.0008 o, /w,=1.00
- = w,/w=185
g 9,/ w,=0.011
X g,/ ©,=0.018
3 0008 r/os=13 FIG. 1. Simulation of real correlation spec-
E r,/wz=24 trum by two Lorentzian spectral profiles. The
N straight line represents the point-electric-dipole
0.0004 1= spectrumRP(w).
0.0002
0.0000 L L L I
0 1 2 3 4

41 N1N2
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X

where

o] 3' w
Xo(w)= | o[ 51

0 C

Xz(w):fmrsjz(g

with

1
a

Xo(@) Yool Okpi)N—1+ Xo(w)

_ 2a%(3-w?a’/c?)

)e—r/adr

r)e‘”adr=

1 1
=—+ —.
a; ap

6 3
\[ng,— 2 OpiIN, 1 — \[ng,— 1(0kei)Ng
1
+ ng,o( Okpi)N_1

(133

(1+ w2a?/c?)3 '

8a*w?a?/c?

(1+ w2a?/c?)?’

Both A(w) andB,(w) are proportional toX|(w).

The spectrunR(w) is then calculated straightforwardly

with the result

YA

w

R(w)

 27wo (1+ w2a?/c?)t’

in which vy, is the EinsteinA coefficient, given by

Ya=

_4‘08|dzl|2

3c3h

(13b

(139

(13d

(143

(14b

and in our example the transition dipole momdsttakes its
absolute value as

2
|dyq| = 64\/8:1aes 1.12e (140

with e denoting the magnitude of the electronic charge.
Actually there is only one parameter R(w), since wg
may also be expressed in termsaoés

1 fi
wo=7(Ex—E))=——. (15
fi ema?

The two atomic radia; anda, in our example are related to
a by simple numerical constants:

a1=;a, a,=3a. (16)
A profile of R(w) is shown in Fig. 1, in which the parameter
in R(w) is taken asy,/wy=0.001; for discussion see below.
In the literaturd 4], the atom with an allowed transition is
taken as a pointlike electric dipole in the calculation of the
correlation spectra, so that the factf* in G, is omitted.
Gy is then independent df; hence the correlation spectrum
becomes linear imw, as can be seen from E@tb). For such

a pointlike atom, thdR(w) in Eq. (14@ will reduce to

YA
2mwq

RP(w)= , (17)

corresponding to lettingwa/c=0. This formula actually
holds for more general’;(x) andW¥,(x), since

GD—f Vi (x) V¥ (x)o|3x—m d (18)
k — 2 1 ~eh wol3y,

which leads to Eq(17) after substituting in Eq(4b). In the
following we shall callRP(w) the point-electric-dipole spec-
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trum; it neglects the contributions of all higher multipole !ll. QUANTUM STOCHASTIC TRAJECTORY APPROACH
moments as well as the finite-size effects. TO THE SPONTANEOUS EMISSION

Quantitatively, we see from Eq143 that in the range We have shown that the two-level atom in general has a

non-Markovian reservoir in its spontaneous emission. Hence
we will, as described in Sec. I, introdud&additional ficti-
tious harmonic oscillators, which interact with the atom in
the same form as photons, to form the expanded system. This
expanded system thus has the Hamiltonian

wa

the spectrunR(w) almost coincides witlRP (w) with errors
less than 1%. To see whethey, lies in this range, we re- 4 A N L N o o
write Eq.(15) as H= Eﬁwoo'3+ 21 ho, afaj-i-iﬁzl (gjouraej—g}c U_ajT),
i= i=

woa 1e’rg 12z¢€ 24

© " 6hca 4Tc (20 in which the energies ot the tvyo atom levels are taken as
+ 1hw,, respectively, and; and al-T are the annihilation and
creation operators of thigh oscillator. Each of these oscilla-
tors, on the other hand, is assumed to interact with its own
reservor with no memory; hence the expanded system is
Markovian. In terms of Langevin equations in the Heisen-
berg picture the above concept is expressed as

wheree?/#ic is the fine structure constant anglis the Bohr
radius%?/me?. HenceRP(w) will be valid up to cover the
point wg, provided

i>1—Oe—2 (~2.4x10?) (21) N
rg 3 #ic ‘ ' %&_(t)z—iwo(}_(t)—jgl gj&j(t)(}s(t)' (25a

We see thaRP(w) shoots up in Fig. 1 while the finite size N N
of the atom makeR(w) drop down. The maximum value of E(} (t)=22 gia (o (t)+22 g*al(ho_ (1)
R(w) appears at dt 3 =y IR s

(25b)
_C d. A o 1 . .
wmax_ﬁ- (22) G (D= —iwja()=gfo_(1) = 5T ja;(t) —Fy(t)
(250)
When w?>c?/a?, R(w) rapidly descends as~’. Roughly  with
speaking the effect of finite atom size is to cut off the point- R o
electric-dipole spectrum at a value of abadé&. The under- (Fj(1))r=0, (Fi(t)FjT(t’)>R: GlNjo(t—t"),
lying physics is evident: when the e.m. wavelengtibe- o
comes comparable with or smaller than the atom diameter (Fi(t)F;(t"))r=0. (250

2a, the phase of the e.m. wave will oscillate over a range of )

27 or even more within the electron cloud, leading to partly The last two terms of Eq(25¢) are the usual Markovian

positive and partly negative coupling of the electron to thedissipation term and fluctuation term contributed by the res-

e.m. wave. It is this kind of cancellation that finally results in €rvor of thejth oscillator. . o

a dying away of the total coupling. When theformal Asolutlon of Eq25¢) is used to eliminate
Another important quantity for allowed transition is the variablesy; andaj’r in Egs.(25a and(25b), the reduced

yalwo. Itis expected that if a neighborhood arounglwith  equation for o, (t) and o4(t) will have non-Markovian
an extent of a fewy, wholly lies within the range denoted damping terms and non-Markovian fluctuation terms since
by Eq.(19), the point-electric-dipole spectruRP(w) can be  each fictitious oscillator contributes a term with a Lorentzian
substituted for the real spectruR(w) in the spontaneous type spectrum. The next step is to select paramefers; ,
emission problem. We see the case shown in Fig. 1 is comand I'; to simulate the original damping and fluctuation
pletely not of this kind. terms.

From Egs.(14b) and (140, one gets As soon as the simulation task is accomplished, one may
go back to the master-equation formulation and treat it by the
quantum stochastic trajectory approach. The non-Hermitian

2 wna 2
~ —2[ &0 . e
=1.22x10 (T) . (23} Hamiltonian is now taken as

wod

C

ya 8(64\2¢?
81

- hc

w, 3
N . ~gn
We shall taken this dimensionless parameter insteaal tof Han=H~- Eﬁ; Tjajaj, (26)
mark theR(w), as we already have in Fig. 1. The value

yalwo=10"3corresponds t&@=157, somewhat larger than whereH is expressed by Eq24). The collapse operators
the upper limit of real nuclei. acting on| W (t)) are
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08 |-

06 - ~

FIG. 2. The spontaneous decay of the upper-
N level population with parametersy,/wy=1

X 1073, wmax/ wo~=1.32. The upper line repre-
sents the result without Markov approximation,
= the middle line represents the result with the Mar-
kov approximation to the real spectruR(w),
and the lowest line represents the Weisskopf-
Wigner result.

N
204 | \\
\\
0.2 - \\\ \\\\:\\—
\\\\\\\ ]
0.0 L 1 L 1 L 1 " 1 " 1 L
0.0 0.5 1.0 15 2.0 25
N
C;=\TAte;, j=12,...N. (27)

To proceed with a concrete analysis, we return to the

simple example with¥,(x) and W,(x) described by Egs.
(10), and try to introduce just two fictitious oscillators to
simulateR(w), namely, to expresR(w) approximately by
R (w) contributed by two fictitious oscillators:

1 2

ROw) =5 2

|g;]°T |

(0—w)*+ ZFIZ

(28)

yal wg may approach %10~ *, which is of the same order
of the ya/wg we take in theR(w) of Fig. 1.

We see from Fig. 1 that by properly choosing the param-
etersw;, g;, andl’; (j=1,2) theR®)(w) of Eq.(26) indeed
fits R(w) quite well, except in the very low frequency re-
gion. In addition, at the point around= wq, R(w) is quite
different from the point-electric-dipole spectruR?(w), and

wg is not far fromw,,ay. Actually from Egs.(22) and (23),
wmax! 0o takes a value about 1.32 for /wy=10"3.

Since the numerical evolution takes place over discrete
times with a small time stept, the wave functionW (t)) is
represented by a sequer{eg(t,)) with t,=nAt. Given the
value of | W (t,)), the next ongW¥(t,, 1)) is determined by

Before starting the simulation, we should first set the valugne following algorithm.

of the parameter iflR(w) which is now taken ag/s/wqg as
mentioned below Eq(23). For the hydrogen atomy,/wg
~4x10°8 and wg/wya~=5X10"%; thus in this case one
may useRP(w) to replaceR(w) and the non-Markovian
correction is negligible. When the atomic numbérin-
creases, the radia;, a,, and a decrease as 4/ Hence
yal g is proportional toZ? as can be seen from Eqd.5)
and (23). The largest realistic value d is about 18; thus

1.0000

(1) Evaluate the two collapse probabilities during the in-
terval (t,,th_1):
P1(ty) = (W(t0)| CICo|W (1)) =T (W (t,)| aday | W (1)) At,
(299
Pa(ty) = (W(t0)| CIC|W (1)) =T (W (ty) | adaa| W (1)) At,
(29b)

0.9999 —
0.9998 |-
0.9997 -
0.9996
0.9995

0.9994 |-

FIG. 3. The initial stage of evolution of the
upper-level population with the real correlation
spectrum fa/wo=1X10"3, wmax/ 0o~1.32).

0.9993 n 1 n 1 L l
0.0 5.0x10" 1.0x10° 1.5x10°

Tt
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1.0 . T . T ' T : T : T :
08 - -
08 - 7] FIG. 4. The spontaneous decay of the upper-
level population withZ=50 (ys/wo=1x10"%).
N2 The upper line is without Markov approximation,
0.4 | - the middle one represents the result with the Mar-
kov approximation to the real spectrum, and the
lowest one represents the Weisskopf-Wigner re-
02 b | sult.
0.0 L 1 L | N 1 L 1 N 1
0.0 0.5 1.0 1.5 2.0 25 3.0
N
whereAt should be small enough to makg(t,)) andP,(t,) if Py(ty)<r; and P,(t,)>r,,
much smaller than 1.
(2) Generate two random numbars andr, which have
uniform probability distribution in the interval (0,1). ézél|‘1’(tn)>
(3) CompareP,(t,), andP,(t,) with r;, andr, and de- |V (thy1))=
rive |W(t,1)) according to the following rule: \/<qf(tn)|q(§g(;2(";l|q;(tn)>
él|q’(tn)> .
|W(ths))= i if Py(th)>ry and Py(ty)>ry,
V(W ()| €1E, W (1)
—i/HH At
if Py(t)>r; and Pu(t,)<r,, B e W (t))
|\P(tn+1)>_ - T —
A VT (1) [P RS 1))
Co| W (tn))
W (1)) = —
\/<‘I’(tn)lCzCzl‘I’(tn)> if Py(t,)<r; and Py(t,)<r,.
______________ (s}
0.0020 - HD (@
Rw)
¥, /@,=0.001
o, /0,=1.08
0.0015 4 | @,/®=1.95
<l g,/0,=0.011
= g,/0,=0.023
3 T /0=1.15 FIG. 5. Simulation of point-electric-dipole
T 00010 | I,/m=1.30 spectrum by two Lorentzian spectral profiles.
& RP(w) is the point-electric-dipole spectrum,
R (w) is its simulation.
000054
0.0000 , ; , ; . ; .
0.0 0.5 1.0 15 2.0

w /a)o
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1.0 —

0.8 |- ]

0.6 |- - FIG. 6. The spontaneous decay of the upper-
level population according to the point-electric-
dipole spectrum §,/we=1x10"%). The solid
04 L ] line is without the Markov approximation, and
the dotted one is with the Markov approximation,
which is now identical to the Weisskopf-Wigner
result.
0.2 | .

0.0 ' 1 1 | 1 1 1 | 1 1 '
0.0 0.5 1.0 1.5 2.0 25 3.0

By carrying out the steps specified above repeatedly fronw/wy= 1, one should introduce more than two fictitious os-
the initial state §)|0,0) where §) is the atom state in the cillators in R®®(w). Figure 4 represents the corresponding
upper level and0,0) denotes the state of two oscillators with decay of (N,(t)) with time; one sees that the Markovian
both particle numbers being zero, we get a quantum stochagorrection is of the same order of magnitude as that in Fig. 2,
tic trajectory of the Monte Carlo wave functigi (t)). The  put the difference betweep and y, becomes much smaller.

expectation value of a given operator with respedtitgt) ) Lastly, we inspect the non-Markovian effect for point-
is then calculated. Finally an ensemble average of 400 traelectric-dipole spectrum. For comparison, the value of
jectories is carried out to give the resultant curve. yalwg is still taken as 1.810 3. We again introduce two

The population in the upper levél,(t)) is shown in Fig. fictitious oscillators to expand the system. Figure 5 shows
2. We see that the non-Markovian result is quite differentthat the point-electric-dipole spectrum can also be fitted quite
from the Weisskopf-Wigner result but not too much differentwell with two Lorentzian spectral profiles in the range
from the result with the Markovian approximation to the real <w/wy<2. The evolution ofN, obtained by the quantum
spectrum, in which the decay rageis defined by Eq(5h). stochastic trajectory approach is given by Fig. 6. Now the
One sees from Fig. 2 that at the poipt=1 the value of the non-Markovian correction becomes much smaller and is just
middle curve is about 0.5, considerably larger than the usualisible for quite largey,t. This may be the reason why
Weisskopf-Wigner value &/ This result can also be ex- yal/wq in Ref.[4] is taken as such a large value as 0.1 to
pected from Fig. 1: the value oR(w,) is considerably exhibit the non-Markovian effect. We note that now the Mar-
smaller tharRP(w,), while the former equalg/27 and the  kov approximate result in Fig. 6 is identical to the usual
latter equalsy/27. Weisskopf-Wigner result since 2RP(wq)=y,. By com-

Carrazana and Vetrf4] pointed out that at the very parison of Fig. 6 with Fig. 2 we see that the two upper curves
beginning of the evolution(N,(t)) slopes gently with for the real spectrum and the point-electric-dipole spectrum,

(d/dt)(Nz(t»lt:o:O- Figure 2 does not show this behavior respectively, are also quite obviously different from each

because this nearly horizontal part is too short. When wé)ther'

carry out a fine-scale investigation at the very beginning
stage, this behavior is clearly shown. We plot this short part
in Fig. 3. Actually this result may also be seen from Ep),
since the integrals on the right-hand side tend to zerb as  We show that the Weisskopf-Wigner result for spontane-
—0. If yalwg is taken as a fictitious value 0.01, this char- ous emission of the hydrogenlike atom with allowed transi-
acteristic becomes very evident and makes the nontion has quite a large error when the atomic numben-
Markovian correction large in the early evolution. creases to a value of about 50. The error comes from two
Now we turn to the case of somewhat smallerin the  factors. If we denote the real correlation spectrum of spon-
case yp/wo=1.0<10"% (the relaventZ is about 50, the taneous emission bR(w), the first factor comes from the
corresponding curve 2R(w)/wy versus w/w, keeps the difference between the Einsteicoefficienty, and vy, the
same form as that in Fig. 1, but the scale is changed so th&wR(w), which takes into account the finite-size effect and
the pointw/wy=1 is now located in the initial region with all possible multipole radiation. The second factor comes
linear behavior. In order to make the simulation spectrunmfrom the nonwhiteness of thR(w), namely, its deviation
R®(w) fit R(w) down to the neighborhood of the point from R(w,). Both factors make the curve df,(t) drop

IV. BRIEF SUMMARY
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