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Non-Markovian correlation spectra and quantum stochastic trajectory analysis
of spontaneous emission of an excited two-level atom
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The non-Markovian correlation spectra of spontaneous emission of an excited two-level atom are derived
including the effect of finite size of the atom and all the possible contribution of allowed multipole radiations.
The emission process is then analyzed by the quantum stochastic trajectory approach. The non-Markovian
effect is counted in by expanding the original system to an enlarged system with Markovian reservoirs. In the
case of a hydrogenlike atom with large atomic numberZ, the deviation from the Weisskopf-Wigner result is
quite evident.
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I. INTRODUCTION

The spontaneous emission of an excited two-level atom
an old question in quantum theory. In the year 1930, We
skopf and Wigner@1# in their investigation of atomic spectr
connected a Lorentzian line profile with exponential decay
an upper-level population of the atom. In the following, w
shall call the exponential decay with the EinsteinA coeffi-
cient as decay rate the Weisskopf-Wigner result. Agarwal@2#
and Ackerhalt and Eberly@3# presented a fully quantum
electrodynamic treatment of the spontaneous emission
the aid of the Markov approximation. Agarwal worked o
the master equation of the atom density operator, while A
erhalt and Eberly did their calculation in the Heisenberg p
ture. Both calculations resulted in the Weisskopf and Wig
exponential decay. However, the exponential decay is
necessarily true in general. For stronger coupling, as in
case of a hydrogenlike atom with large atomic numberZ, the
instaneous decay rate may depend on the history of the
cess and hence the process is non-Markovian. Moreover
glecting the finite atom-size effect and restriction to elec
dipole transitions may also become improper.

Carrazana and Vetri@4# studied non-Markovian effects in
the spontaneous decay of the atomic population differenc
1980. They first derived a master equation for the sponta
ous emission process without the Markov approximati
and then arrived at a closed equation for^ŝ3(t)&, the popu-
lation difference, in the Born approximation and in th
rotating-wave approximation. This equation was studied s
sequently by means of the Laplace transformation. Bu
their approach the atom is actually taken as a pointlike e
tric dipole, so that the finite-size effect and all higher allow
multipole contributions are neglected; in addition, a cut
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wavelength was introduced to avoid divergence of the in
gral with respect to the wave vector. In their numerical c
culation the ratiogA /v0 is taken as large as 0.1, wherev0 is
the atomic transition frequency andgA is the corresponding
EinsteinA coefficient. For such a large value ofgA /v0, apart
from its lack of reality, the restriction to the pointlike electr
dipole transition, as we show in the following, is irrelevan

In the 1990s, a kind of new method known as the qu
tum stochastic trajectory approach@5# and other related sto
chastic wave equation approaches were developed@6–8# to
treat the open system. In this paper the stochastic trajec
formulation will be adopted, in which the solution of th
master equation is first expressed as a sum of various
sible quantum trajectories@5#, and then this summation i
calculated by a type of Monte Carlo treatment, namely,
summation is transformed to the ensemble average of
called stochastic quantum trajectories. This approach
been applied to wide classes of problems. However, its
plication to a strongly interacting system is seriously limit
by its Markov approximation.

A few years ago, Imamoglu and co-workers develope
procedure@9,10# to extend the application range of the st
chastic approach to a large class of non-Markovian p
cesses. Their procedure is based on the recognition th
given non-Markovian process of certain type can be emb
ied in an enlarged Markovian process. Specifically, the or
nal system is expanded by introducing additional fictitio
harmonic oscillators which interact on the one hand with
original system and on the other hand with their own res
voirs of vanishing correlation time, namely the enlarged s
tem has Markovian reservoirs. It is well known that the p
of conjugate operators of a harmonic oscillator interact
with a Markovian reservoir will correlate with each other b
a finite interval of order of their decay time; hence they w
serve as effective non-Markovian reservoirs to the origi
system they couple with. Through proper selection of
parameters for the fictitious oscillators one may simulate
original non-Markovian reservoirs by these effective altern
tives.

There is another stochastic wave function method tha

est
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also capable of treating a non-Markovian process in a s
tematic way @11#. The proposed stochastic unraveling
based on a description of the system in a doubled Hilb
space. Non-Markovian effects in the dynamics are th
treated by employing the time-convolutionless projection
erator technique.

In this paper we shall adopt the former non-Markovi
approach, since we find that it is possible to simulate
non-Markovian reservoir in our problem by just a few fic
tious oscillators, which makes the numerical task rather e

The non-Markovian approach is known to be essential
describing the dissipative dynamics of electrons or excit
in semiconductors. Now we will show that even in the spo
taneous emission of a hydrogenlike atom with large ato
numberZ the deviation from Weisskopf-Wigner decay is al
evident.

The first important thing for this investigation is then
derive the non-Markovian spectrumR(v) of the correlation
functions for atomic spontaneous emission. We shall do
without the pointlike electric dipole transition approxim
tion. Then the quantum stochastic trajectory approach is u
to study the non-Markovian correction to the decay of
atom upper-level population. No cutoff wavelength is need
in our formulation. In the case of ‘‘allowed transition,’’ w
see that corrections actually come from two factors. The fi
is the difference between 2pR(v0) and the EinsteinA coef-
ficient gA , which means that, if one still makes the Marko
approximation but on the basis of the real correlation sp
trum, the resultant exponential decay is still quite differe
from the Weisskopf-Wigner result. The second factor is
nonwhiteness ofR(v), namely, its deviation fromR(v0).

II. THE REAL SPECTRUM OF THE CORRELATION
FUNCTION FOR SPONTANEOUS EMISSION

OF A TWO-LEVEL ATOM

The A•P type Ĥ int for the spontaneous emission of
two-level atom in the rotating-wave approximation is know
to be

Ĥ int~ t !5 i\(
k, j

@gk j ŝ1~ t !âk j~ t !2gk j* ŝ2~ t !âk j
† ~ t !# ~1!

whereâk j (âk j
† ) is the photon annihilation~creation! operator

of mode (k, j ), andŝ6 are atom-level change operators (ŝ1

corresponds to upward change andŝ2 to downward
change!. For a hydrogenlike atomgk j is given by

gk j52
e

m
A2p\

Vkc
«k j•Gk ,

Gk5E eik•xC2
†~x!“C1~x!d3x, ~2!

in which «k j is the polarization vector of photon mode (k, j ),
and C2(x) and C1(x) are the upper-level and lower-leve
wave functions, respectively. The dynamical equations
both atom and photon variables are easily deduced f
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Ĥ int . Eliminate the operatorsâk j andâk j
† by taking the elec-

tromagnetic ~e.m.! fields as reservoir; the resultan
differential-integral equations are

d

dt
ŝ2~ t !5E

0

t

u~ t2t8!ŝ3~ t !ŝ2~ t8!dt82ŝ3~ t !Ŝ~ t !,

~3a!

d

dt
ŝ3~ t !522E

0

t

u~ t2t8!ŝ1~ t !ŝ2~ t8!dt812ŝ1~ t !Ŝ~ t !

1H.c., ~3b!

whereŝ3 is the atom population-difference operator, and

Ŝ~ t !5(
k j

gk j âk j~0!e2 i (v2v0)t ~3c!

is the fluctuation force operator.
The correlation function in the above differential-integr

equations is expressed by

u~ t2t8!5(
k j

ugk j u2e2 i (v2v0)(t2t8)

[E
0

`

R~v!e2 i (v2v0)(t2t8)dv, ~4a!

in which

R~v!5
V

~2p!3

v2

c3 E dVk(
j

ugk j u25
e2\v

4p2m2c3E dVk@ uGku2

2unk•Gku2#. ~4b!

In the case of spontaneous emission,^âk j (0)âk8 j 8
† (0)&R

5dkk8d j j 8 and all other pairs have zero expectation valu
hence no additional correlation function will stem from th
fluctuation force.

If the Markov approximation is made on the real spectru
R(v), the correlation function will reduce to

u~ t2t8!5~g1 i2dv0!d~ t2t8!. ~5a!

From Eq.~4a! one may obtain that the value ofg is given by

g52pR~v0!. ~5b!

Physically,g represents the whole transition rate contribut
by all allowed multipole~including dipole! radiations and
with finite atom size effect included; takingv5v0 means
that the photon energy is equal to the energy difference of
atomic levels.dv0 represents the frequency shift of the ato
level, but its value obtained by our simple model has
meaning and hence it will be omitted.

Correspondingly,

^Ŝ~ t !Ŝ†~ t8!&5gd~ t2t8!. ~5c!
0-2
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In this case one still obtains exponential decay of the upp
level population̂ N̂2(t)&, but the decay constant isg, not the
EinsteinA coefficientgA . The latter represents the transitio
rate contributed by pointlike electric dipole radiation.

In the usual estimation, the characteristic correlation ti
of u(t2t8) is of order 2p/v0 while the decay time of atomic
variables is of order 1/g; hence for the Markov approxima
tion to be valid 2p/v0 should be much less than 1/g,
namely, 2pg/v0!1. More precise information can only b
learned from the solution of the differential-integral equ
tions ~3a! and ~3b! or of an equivalent master equation.

As a first step we calculate the coupling constantgk j . For
simplicity, we omit the spin of the electron. Substituting t
wave function

C1~x!5 f 1~r !Yl 1m1
~uw!, C2~x!5 f 2~r !Yl 2m2

~uw!
-

s
fir

ge
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and also the expansion formula

eik•x54p(
lm

i l j l~kr !Ylm~ukwk!Ylm* ~uw! ~6!

into Eq. ~2! and making use of the formula

“C1~x!52A l 111

2l 111Fd f1~r !

dr
2

l 1

r
f 1~r !GT l 1l 111m1

~uw!

1A l 1

2l 111Fd f1~r !

dr
1

l 111

r
f 1~r !G

3T l 1l 121m1
~uw!, ~7!

whereT j lm(uw) is the vector harmonics, one getsGk after
integration overuk , wk :
Gk5~21!m2A4p~2l 211!

2l 111 (
lmm

i l

A2l 11
Ylm~ukwk!@2A~ l 111!~2l 113!$Al~v!2 l 1Bl~v!%C~ l 111,1,l 1 ;m1

2m,m,m1!C~ l 111,l 2 ,l ;m12m,2m2 ,m!C~ l 111,l 2 ,l ;0,0,0!1Al 1~2l 121!$Al~v!1~ l 111!Bl~v!%

3C~ l 121,1,l 1 ;m12m,m,m1!C~ l 121,l 2 ,l ;m12m,2m2 ,m!C~ l 121,l 2 ,l ;0,0,0!#nm , ~8a!
r a

we
. In

e

in which C( l 111,1,l 1 ;m12m,m,m1), etc., are Clebsch
Gordan coefficients,nm (m511,0,21) are spherical bases

n1152
1

A2
~n11 in2!, n05n3 , n215

1

A2
~n12 in2!

~8b!

satisfying the relations

nm* 5~21!mn2m , nm* •nm85dmm8 ,

and

Al~v!5E
0

`

r 2 j l S v

c
r D f 2~r !

d f1~r !

dr
dr, ~8c!

Bl~v!5E
0

`

r j l S v

c
r D f 2~r ! f 1~r !dr. ~8d!

The summation in Eq.~8a! actually contains only finite term
because of the angular momentum addition rule. For the
term in the square brackets,l is restricted to the rangeu l 2
2 l 121u< l< l 21 l 111, and for the second term to the ran
u l 22 l 111u< l< l 21 l 121. SubstitutingGk and the formula

nk5A4p

3 (
m

Ylm~ukwk!nm* ~9!

into Eq. ~4b! and carrying out the integration overuk and
wk , one may obtain the spectral functionR(v) immediately.
st

To see these spectral functions explicitly, we conside
simple example.C1(x) and C2(x) are Schro¨dinger wave
functions with quantum numbers (n151,l 150) and (n2
52,l 251,m251), respectively, expressed by

C1~x!5
1

A4p
N1e2r /a1, N15A 4

a1
3
, ~10a!

C2~x!5N2re2r /a2Y11~uw!, N25A 4

3a2
5
. ~10b!

The corresponding transition is an allowed transition, so
can compare our result with that of Weisskopf and Wigner
this simple case, the gradient ofC1(x) is given by

“C1~x!52
1

A4p
N1

1

a1
e2r /a1nr ~11!

wherenr is the unit vector alongr and is expressed in th
spherical bases as

nr5A4p

3 (
m

~21!mYlm~uw!n2m , m511,0,21.

~12!

Substituting these formulas and Eq.~6! into Eq. ~2! and car-
rying out the angular integration, one obtains
0-3
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FIG. 1. Simulation of real correlation spec
trum by two Lorentzian spectral profiles. Th
straight line represents the point-electric-dipo
spectrumRD(v).
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Gk5A4p

3

N1N2

a1
FX0~v!Y00~ukwk!n211X2~v!

3SA6

5
Y2,22~ukwk!n112A3

5
Y2,21~ukwk!n0

1A1

5
Y2,0~ukwk!n21D G ~13a!

where

X0~v!5E
0

`

r 3 j 0S v

c
r De2r /adr5

2a4~32v2a2/c2!

~11v2a2/c2!3
,

~13b!

X2~v!5E
0

`

r 3 j 2S v

c
r De2r /adr5

8a4v2a2/c2

~11v2a2/c2!3
.

~13c!

with

1

a
5

1

a1
1

1

a2
. ~13d!

Both Al(v) andBl(v) are proportional toXl(v).
The spectrumR(v) is then calculated straightforwardl

with the result

R~v!5
gA

2pv0

v

~11v2a2/c2!4
, ~14a!

in which gA is the EinsteinA coefficient, given by

gA5
4v0

3ud21u2

3c3\
, ~14b!
04381
and in our example the transition dipole momentd21 takes its
absolute value as

ud21u564A 2

81
ae>1.12ae ~14c!

with e denoting the magnitude of the electronic charge.
Actually there is only one parameter inR(v), sincev0

may also be expressed in terms ofa as

v05
1

\
~E22E1!5

\

6ma2
. ~15!

The two atomic radiia1 anda2 in our example are related t
a by simple numerical constants:

a15
3

2
a, a253a. ~16!

A profile of R(v) is shown in Fig. 1, in which the paramete
in R(v) is taken asgA /v050.001; for discussion see below

In the literature@4#, the atom with an allowed transition i
taken as a pointlike electric dipole in the calculation of t
correlation spectra, so that the factoreik•x in Gk is omitted.
Gk is then independent ofk; hence the correlation spectrum
becomes linear inv, as can be seen from Eq.~4b!. For such
a pointlike atom, theR(v) in Eq. ~14a! will reduce to

RD~v!5
gA

2pv0
v, ~17!

corresponding to lettingva/c50. This formula actually
holds for more generalC1(x) andC2(x), since

Gk
D5E C2* ~x!“C1~x!d3x5

m

e\
v0d21, ~18!

which leads to Eq.~17! after substituting in Eq.~4b!. In the
following we shall callRD(v) the point-electric-dipole spec
0-4
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NON-MARKOVIAN CORRELATION SPECTRA AND QUANTUM . . . PHYSICAL REVIEW A64 043810
trum; it neglects the contributions of all higher multipo
moments as well as the finite-size effects.

Quantitatively, we see from Eq.~14a! that in the range

va

c
,0.05 ~19!

the spectrumR(v) almost coincides withRD(v) with errors
less than 1%. To see whetherv0 lies in this range, we re-
write Eq. ~15! as

v0a

c
5

1

6

e2

\c

r B

a
5

1

4

Ze2

\c
~20!

wheree2/\c is the fine structure constant andr B is the Bohr
radius\2/me2. HenceRD(v) will be valid up to cover the
point v0, provided

a

r B
.

10

3

e2

\c
~'2.431022!. ~21!

We see thatRD(v) shoots up in Fig. 1 while the finite siz
of the atom makesR(v) drop down. The maximum value o
R(v) appears at

vmax5
c

A7a
. ~22!

Whenv2@c2/a2, R(v) rapidly descends asv27. Roughly
speaking the effect of finite atom size is to cut off the poi
electric-dipole spectrum at a value of aboutc/a. The under-
lying physics is evident: when the e.m. wavelengthl be-
comes comparable with or smaller than the atom diam
2a, the phase of the e.m. wave will oscillate over a range
2p or even more within the electron cloud, leading to par
positive and partly negative coupling of the electron to
e.m. wave. It is this kind of cancellation that finally results
a dying away of the total coupling.

Another important quantity for allowed transition
gA /v0. It is expected that if a neighborhood aroundv0 with
an extent of a fewgA wholly lies within the range denote
by Eq.~19!, the point-electric-dipole spectrumRD(v) can be
substituted for the real spectrumR(v) in the spontaneous
emission problem. We see the case shown in Fig. 1 is c
pletely not of this kind.

From Eqs.~14b! and ~14c!, one gets

gA

v0
5

8

3 S 64

81D
2 e2

\c S v0a

c D 2

>1.2231022S v0a

c D 2

. ~23!

We shall taken this dimensionless parameter instead ofa to
mark theR(v), as we already have in Fig. 1. The valu
gA /v051023corresponds toZ.157, somewhat larger tha
the upper limit of real nuclei.
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III. QUANTUM STOCHASTIC TRAJECTORY APPROACH
TO THE SPONTANEOUS EMISSION

We have shown that the two-level atom in general ha
non-Markovian reservoir in its spontaneous emission. He
we will, as described in Sec. I, introduceN additional ficti-
tious harmonic oscillators, which interact with the atom
the same form as photons, to form the expanded system.
expanded system thus has the Hamiltonian

Ĥ5
1

2
\v0ŝ31(

j 51

N

\v j â j
†â j1 i\(

j 51

N

~gj ŝ1â j2gj* ŝ2â j
†!,

~24!

in which the energies of the two atom levels are taken
6 1

2 \v0, respectively, andâ j andâ j
† are the annihilation and

creation operators of thej th oscillator. Each of these oscilla
tors, on the other hand, is assumed to interact with its o
reservor with no memory; hence the expanded system
Markovian. In terms of Langevin equations in the Heise
berg picture the above concept is expressed as

d

dt
ŝ2~ t !52 iv0ŝ2~ t !2(

j 51

N

gj â j~ t !ŝ3~ t !, ~25a!

d

dt
ŝ3~ t !52(

j 51

N

gj â j~ t !ŝ1~ t !12(
j 51

N

gj* â j
†~ t !ŝ2~ t !,

~25b!

d

dt
â j~ t !52 iv j â j~ t !2gj* ŝ2~ t !2

1

2
G j â j~ t !2F̂ j~ t !

~25c!

with

^F̂ j~ t !&R50, ^F̂ i~ t !F̂ j
†~ t8!&R5d i j G jd~ t2t8!,

^F̂ i~ t !F̂ j~ t8!&R50. ~25d!

The last two terms of Eq.~25c! are the usual Markovian
dissipation term and fluctuation term contributed by the r
ervor of thej th oscillator.

When the formal solution of Eq.~25c! is used to eliminate
the variablesâ j andâ j

† in Eqs.~25a! and~25b!, the reduced

equation for ŝ1(t) and ŝ3(t) will have non-Markovian
damping terms and non-Markovian fluctuation terms sin
each fictitious oscillator contributes a term with a Lorentzi
type spectrum. The next step is to select parametersgj , v j ,
and G j to simulate the original damping and fluctuatio
terms.

As soon as the simulation task is accomplished, one m
go back to the master-equation formulation and treat it by
quantum stochastic trajectory approach. The non-Hermi
Hamiltonian is now taken as

Ĥnh5Ĥ2
i

2
\(

j
G j â j

†â j , ~26!

where Ĥ is expressed by Eq.~24!. The collapse operator
acting onuC(t)& are
0-5
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FIG. 2. The spontaneous decay of the upp
level population with parametersgA /v051
31023, vmax/v0'1.32. The upper line repre
sents the result without Markov approximatio
the middle line represents the result with the Ma
kov approximation to the real spectrumR(v),
and the lowest line represents the Weissko
Wigner result.
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Ĉj5AG jDtâ j , j 51,2, . . . ,N. ~27!

To proceed with a concrete analysis, we return to
simple example withC2(x) and C1(x) described by Eqs
~10!, and try to introduce just two fictitious oscillators t
simulateR(v), namely, to expressR(v) approximately by
R(s)(v) contributed by two fictitious oscillators:

R(s)~v!5
1

2p (
j 51

2 ugj u2G j

~v2v j !
21

1

4
G j

2

. ~28!

Before starting the simulation, we should first set the va
of the parameter inR(v) which is now taken asgA /v0 as
mentioned below Eq.~23!. For the hydrogen atom,gA /v0
'431028 and v0 /vmax'531023; thus in this case one
may useRD(v) to replaceR(v) and the non-Markovian
correction is negligible. When the atomic numberZ in-
creases, the radiia1 , a2, and a decrease as 1/Z. Hence
gA /v0 is proportional toZ2 as can be seen from Eqs.~15!
and ~23!. The largest realistic value ofZ is about 102; thus
04381
e

e

gA /v0 may approach 431024, which is of the same orde
of the gA /v0 we take in theR(v) of Fig. 1.

We see from Fig. 1 that by properly choosing the para
etersv j , gj , andG j ( j 51,2) theR(s)(v) of Eq. ~26! indeed
fits R(v) quite well, except in the very low frequency re
gion. In addition, at the point aroundv5v0 , R(v) is quite
different from the point-electric-dipole spectrumRD(v), and
v0 is not far fromvmax. Actually from Eqs.~22! and ~23!,
vmax/v0 takes a value about 1.32 forgA /v051023.

Since the numerical evolution takes place over discr
times with a small time stepDt, the wave functionuC(t)& is
represented by a sequenceuC(tn)& with tn5nDt. Given the
value of uC(tn)&, the next oneuC(tn11)& is determined by
the following algorithm.

~1! Evaluate the two collapse probabilities during the
terval (tn ,tn21):

P1~ tn!5^C~ tn!uĈ1
†Ĉ1uC~ tn!&5G1^C~ tn!uâ1

†â1uC~ tn!&Dt,

~29a!

P2~ tn!5^C~ tn!uĈ2
†Ĉ2uC~ tn!&5G2^C~ tn!uâ2

†â2uC~ tn!&Dt,

~29b!
n

FIG. 3. The initial stage of evolution of the

upper-level population with the real correlatio
spectrum (gA /v05131023,vmax/v0'1.32).
0-6
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FIG. 4. The spontaneous decay of the upp
level population withZ>50 (gA /v05131024).
The upper line is without Markov approximation
the middle one represents the result with the M
kov approximation to the real spectrum, and t
lowest one represents the Weisskopf-Wigner
sult.
whereDt should be small enough to makeP1(tn) andP2(tn)
much smaller than 1.

~2! Generate two random numbersr 1 and r 2 which have
uniform probability distribution in the interval (0,1).

~3! CompareP1(tn), andP2(tn) with r 1, andr 2 and de-
rive uC(tn11)& according to the following rule:

uC~ tn11!&5
Ĉ1uC~ tn!&

A^C~ tn!uĈ1
†Ĉ1uC~ tn!&

if P1~ tn!.r 1 and P2~ tn!<r 2 ,

uC~ tn11!&5
Ĉ2uC~ tn!&

A^C~ tn!uĈ2
†Ĉ2uC~ tn!&
04381
if P1~ tn!<r 1 and P2~ tn!.r 2 ,

uC~ tn11!&5
Ĉ2Ĉ1uC~ tn!&

A^C~ tn!uĈ1
†Ĉ2

†Ĉ2Ĉ1uC~ tn!&

if P1~ tn!.r 1 and P2~ tn!.r 2 ,

uC~ tn11!&5
e2 i /\ĤnhDtuC~ tn!&

A^C~ tn!uei /\(Ĥnh
†

2Ĥnh)DtuC~ tn!&

if P1~ tn!,r 1 and P2~ tn!,r 2 .
s.
,

FIG. 5. Simulation of point-electric-dipole
spectrum by two Lorentzian spectral profile
RD(v) is the point-electric-dipole spectrum
R(s)(v) is its simulation.
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FIG. 6. The spontaneous decay of the upp
level population according to the point-electric
dipole spectrum (gA /v05131023). The solid
line is without the Markov approximation, an
the dotted one is with the Markov approximatio
which is now identical to the Weisskopf-Wigne
result.
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By carrying out the steps specified above repeatedly fr
the initial state (0

1)u0,0& where (0
1) is the atom state in the

upper level andu0,0& denotes the state of two oscillators wi
both particle numbers being zero, we get a quantum stoc
tic trajectory of the Monte Carlo wave functionuC(t)&. The
expectation value of a given operator with respect touC(t)&
is then calculated. Finally an ensemble average of 400
jectories is carried out to give the resultant curve.

The population in the upper level^N̂2(t)& is shown in Fig.
2. We see that the non-Markovian result is quite differe
from the Weisskopf-Wigner result but not too much differe
from the result with the Markovian approximation to the re
spectrum, in which the decay rateg is defined by Eq.~5b!.
One sees from Fig. 2 that at the pointgAt51 the value of the
middle curve is about 0.5, considerably larger than the us
Weisskopf-Wigner value 1/e. This result can also be ex
pected from Fig. 1: the value ofR(v0) is considerably
smaller thanRD(v0), while the former equalsg/2p and the
latter equalsgA/2p.

Carrazana and Vetri@4# pointed out that at the very
beginning of the evolution^N̂2(t)& slopes gently with
(d/dt)^N̂2(t)&u t5050. Figure 2 does not show this behavi
because this nearly horizontal part is too short. When
carry out a fine-scale investigation at the very beginn
stage, this behavior is clearly shown. We plot this short p
in Fig. 3. Actually this result may also be seen from Eq.~3b!,
since the integrals on the right-hand side tend to zerot
→0. If gA /v0 is taken as a fictitious value 0.01, this cha
acteristic becomes very evident and makes the n
Markovian correction large in the early evolution.

Now we turn to the case of somewhat smallerZ. In the
casegA /v051.031024 ~the relaventZ is about 50!, the
corresponding curve 2pR(v)/v0 versus v/v0 keeps the
same form as that in Fig. 1, but the scale is changed so
the pointv/v051 is now located in the initial region with
linear behavior. In order to make the simulation spectr
R(s)(v) fit R(v) down to the neighborhood of the poin
04381
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v/v051, one should introduce more than two fictitious o
cillators in R(s)(v). Figure 4 represents the correspondi
decay of ^N̂2(t)& with time; one sees that the Markovia
correction is of the same order of magnitude as that in Fig
but the difference betweeng andgA becomes much smaller

Lastly, we inspect the non-Markovian effect for poin
electric-dipole spectrum. For comparison, the value
gA /v0 is still taken as 1.031023. We again introduce two
fictitious oscillators to expand the system. Figure 5 sho
that the point-electric-dipole spectrum can also be fitted q
well with two Lorentzian spectral profiles in the range1

2

,v/v0,2. The evolution ofN2 obtained by the quantum
stochastic trajectory approach is given by Fig. 6. Now
non-Markovian correction becomes much smaller and is
visible for quite largegAt. This may be the reason wh
gA /v0 in Ref. @4# is taken as such a large value as 0.1
exhibit the non-Markovian effect. We note that now the Ma
kov approximate result in Fig. 6 is identical to the usu
Weisskopf-Wigner result since 2pRD(v0)5gA . By com-
parison of Fig. 6 with Fig. 2 we see that the two upper curv
for the real spectrum and the point-electric-dipole spectru
respectively, are also quite obviously different from ea
other.

IV. BRIEF SUMMARY

We show that the Weisskopf-Wigner result for spontan
ous emission of the hydrogenlike atom with allowed tran
tion has quite a large error when the atomic numberZ in-
creases to a value of about 50. The error comes from
factors. If we denote the real correlation spectrum of sp
taneous emission byR(v), the first factor comes from the
difference between the EinsteinA coefficientgA andg, the
2pR(v0), which takes into account the finite-size effect a
all possible multipole radiation. The second factor com
from the nonwhiteness of theR(v), namely, its deviation
from R(v0). Both factors make the curve ofN2(t) drop
0-8
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more slowly. The first correction is calculated analytically
this paper, while the second correction~due to the non-
Markov behavior of the correlation spectrum! presented here
is calculated numerically and is not so definite, because
simulation error and also the pseudocharacter of the prog
generated random numbers.
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