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Random lasing in closely packed
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We report experimental and theoretical studies of the random lasing threshold and its fluctuation in an en-
semble of highly packed spherical dielectric scatterers. The ratio of the sphere diameter to the lasing wave-
length was varied in a wide range, which covered the transition from the weak Rayleigh scattering regime to
the strong Mie scattering regime. Experimentally, when the diameters of monodispersed ZnO spherical par-
ticles changed from less than 100 to more than 600 nm we observed a drastic decrease of the lasing threshold
at small-particle size followed by a plateau at large particle size. We attribute this effect to the particle-size
dependence of transport mean free path lt , which was deduced from coherent backscattering measurements.
Theoretical calculation of lt reproduced experimental behavior. Using the finite-difference time domain
method, we obtained the lasing threshold and its standard deviation as functions of particle size in two-
dimensional systems. The results of our numerical simulations are in qualitative agreement with the experi-
mental data. © 2004 Optical Society of America

OCIS codes: 290.4210, 140.3460.
1. INTRODUCTION
The random laser is a special kind of laser whose feed-
back is due to light scattering instead of to reflection. Af-
ter the pioneering research of Letokhov in 1968,1 the
study of the random laser was renewed in the past decade
with the experimental demonstration of an incoherent
random laser and a coherent random laser.2 The active
random media used for the random laser can be divided
into two categories: passive scatterers doped in a gain
medium, e.g., titanium dioxide microparticles in a dye so-
lution, and aggregations of active scatterers such as ZnO
powder. In the former, gain media and scattering centers
are separated; thus the amount of gain and the amount of
scattering can be varied independently. However, the
scattering strength of the latter is usually higher than of
the former, owing to a larger contrast of refractive index
and a higher density of scatterers. Hence the lasing
threshold is lower in the second type of random medium.
Nevertheless, the threshold of a random laser is still too
high for practical applications. Further reduction of the
lasing threshold requires better confinement of light in
the random medium through stronger scattering. It is
well known that light scattering by dielectric particles is
strongly enhanced at Mie resonances. Recently Cha-
banov and Genack observed photon localization in reso-
nant media at the frequency near the first Mie
resonance.3 That research inspired us to use closely
packed resonant scatterers for a random laser. We syn-
thesized monodisperse ZnO nanospheres and closely
packed them at high pressure. The mean diameter of
ZnO spheres varied over a wide range and covered several
0740-3224/2004/010159-09$15.00 ©
Mie resonances for the ZnO emission wavelength.
Apalkov et al. showed that the likelihood of finding a ran-
dom resonator of high quality increases dramatically with
increasing correlation radius.4 A drastic increase in the
correlation radius near Mie resonance would lead to the
formation of high-Q cavities and to the reduction of the
lasing threshold. We measured the random lasing
threshold in closely packed ZnO powder. When the di-
ameter of monodispersed ZnO spherical particles changed
from less than 100 to more than 600 nm, we observed a
drastic decrease in the lasing threshold at small-particle
size, followed by a plateau at large-particle size. This de-
pendence was attributed to a change of scattering
strength in our samples.

In a scattering medium there are two characteristic
length scales that determine light transport properties.
When a coherent pulse of electromagnetic radiation is in-
cident on a system containing scattering centers, the en-
ergy of the beam is exponentially attenuated with scatter-
ing length lsc . Theoretically, lsc is usually determined
from the average (field) Green function, where the effect
of scattering is manifested as a complex part of the refrac-
tive index of the effective medium. What appears to be a
loss for coherent beam is, in fact, converted into multiply
scattered waves that propagate diffusely.5,6 For suffi-
ciently thick systems the energy transport is dominated
by diffusion because of a much slower power-law depen-
dence on sample thickness. Transport length lt that gov-
erns the diffusive energy transfer enters the diffusive
equation for averaged intensity; it is, therefore, a prop-
erty of the averaged product of two Green functions or, al-
2004 Optical Society of America
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ternatively, of the correlation function. It is worthwhile
mentioning that the wave nature of light is ignored in the
regular diffusion equation. Wave interference effects re-
sult in the corrections that lead to interesting phenom-
ena, of which coherent backscattering (CBS) is, probably,
the most prominent.7,8 In our experiment we utilized
CBS to extract the value of lt . Theoretically we propose
to determine lt from the exact solution9 of the scattering
problem for the clusters of dielectric spheres. This calcu-
lation allows us to find lt in the regime of strong scatter-
ing.

In a random laser, not only the mean value of the lasing
threshold but also its fluctuation is an important charac-
teristic of the system. Unlike that of a conventional la-
ser, the random laser’s threshold varies from sample to
sample. Such variation is intrinsic; i.e., samples with the
same scattering length may have different lasing thresh-
olds. The variation of lasing threshold reflects the statis-
tical distribution of a random cavity-quality factor.
Patra calculated the distribution of lasing threshold in
both diffusion and localization regimes.10 Although
threshold variation is an important characteristic of a
random laser, there has been no experimental measure-
ment of it so far, to our knowledge. In a previous experi-
ment with polydisperse powder we measured the lasing
threshold in different parts of the same sample. The
sample’s nonuniformity led to fluctuation of the scattering
length across the powder, and it added an artificial varia-
tion to the intrinsic variation of random lasing threshold.
Using monodisperse ZnO spheres, we were able to make
uniform random samples. In this paper we report our
measurement and numerical simulation of the fluctuation
of lasing threshold in samples of different scattering
lengths.

Theoretically, finding the threshold of a random laser is
a difficult problem. The states responsible for the lasing
threshold are those with the smallest leakage. Therefore
they should contribute least to the transport properties
that have been extensively studied. The finite-difference
time-domain method11 has turned out to be a reliable tool
in the investigation of the random laser in one
dimension12 and two dimensions.13 Here we report the
finite-difference time-domain–based calculation of the
lasing threshold in random media of monodisperse scat-
terers, where we have obtained good qualitative agree-
ment with the experiment. At present, our numerical
simulation of sufficiently large systems is possible only in
two dimensions.

2. EXPERIMENTS
The ZnO particles were synthesized in a two-stage reac-
tion process. Experimental apparatus and fabrication
procedures were described previously.14 In a typical re-
action, 0.03 mol. of ZnAc was added to 300 mL of diethyl-
ene glycol and heated under reflux to 160 °C. Shortly af-
ter the solution reached that temperature, precipitation
of ZnO occurred. After the product solution was centri-
fuged, the supernatant (diethylene glycol, dissolved reac-
tion products, unreacted ZnAc, and water) was decanted
and saved. The polydisperse ZnO particles were dis-
carded. A secondary reaction was then produced as de-
scribed above, except that before precipitation (typically
at 150 °C) some amount of the supernatant of the primary
reaction was added to the solution. Following the addi-
tion there was a temperature drop, and precipitation oc-
cured at a temperature lower than 160 °C. We washed
and dried the precipitant to get a white, fine ZnO powder.
A scanning-electron microscope (SEM) image showed that
the powder consisted of monodisperse spheres. The dis-
persion of the spheres diameter was 5–8%. By adding
different amounts of supernatant before precipitation, we
varied the mean diameter of ZnO spheres from 85 to 617
nm. High-resolution SEM images revealed that indi-
vidual spheres consist of many ZnO nanocrystallites.
X-ray diffraction data showed that the sizes of these
nanocrystallites were 10–15 nm for all the ZnO spheres of
different diameters.

We cold-pressed ZnO spheres with a pressure of 150
MPa to form pellets of diameter 7.9 mm and thickness 1.4
mm. Because we used the same amount (0.17 g) of pow-
der and made pellets of the same volume, the densities r
of all the pellets made from different-diameter spheres
were the same. Thus the ZnO filling factors of all the
pellets were the same: f 5 r/r0 ; 45%, where r0 is the
density of ZnO crystals. Figure 1 shows SEM images
(top view) of two pellets made from ZnO spheres with
mean diameters of 85 and 617 nm. Because ZnO spheres
are porous and are composed of nanocrystallites, the ef-

Fig. 1. SEM images (top view) of two pellets made from
ZnO spheres with mean diameters (a) d 5 85 nm and (b)
d 5 617 nm.
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fective index of refraction n for ZnO spheres is lower than
that of ZnO crystals. In previous research, the present
authors and others14 arranged the ZnO spheres in a fcc
structure and measured the transmission spectrum. The
dip in the transmission spectrum gave the frequency of
the photonic band gap in the (111) direction. From it, we
inferred the effective index of refraction n ; 1.7; the vol-
ume fraction of ZnO nanocrystallites inside a single
sphere was ;77%. Therefore the volume fraction of the
ZnO spheres in the pellet was ;58%. This number con-
firms that ZnO spheres are closely packed. Unlike sedi-
mentation, our process of packing ZnO spheres was so
fast that the spheres had no time to arrange themselves
into ordered structures. Hence the ZnO spheres were
randomly positioned, as can be seen from the SEM im-
ages.

In the lasing experiment the samples were optically ex-
cited by the third harmonic of a mode-locked Nd:YAG la-
ser (l 5 355 nm, 10-Hz repetition rate, 20-ps pulse
width). The pump beam was focused to a spot on the
sample’s surface at normal incidence. The emission spec-
tra were measured by a spectrometer with 0.13-nm spec-
tral resolution. As shown in Fig. 2, at low excitation in-
tensity the spectrum had a single, broad spontaneous-
emission peak. As the pump intensity increased, the
emission peak was gradually narrowed as a result of am-
plified spontaneous emission. When the excitation inten-
sity exceeded a threshold, extremely narrow peaks
emerged near 375 nm. With a further increase of the
pump intensity, more sharp peaks appeared. Figure 3 is
a plot of the lasing threshold pump intensity versus the
ZnO sphere diameter for two pump areas. When the di-
ameter of the excitation spot was changed from 8 to 16
mm, the lasing threshold exhibited a similar dependence
on sphere size. There are two distinct features in Fig. 3:
first, the threshold pump intensity remains nearly con-
stant for a wide range of sphere diameters from 137 to
617 nm; second, with a small decrease of sphere diameter
from 137 to 114 nm, the lasing threshold increases dra-
matically, especially for smaller pump area. For the
sample of 85 nm spheres, we could observe only amplified
spontaneous emission but not lasing. The lasing thresh-

Fig. 2. Measured spectra of emission from a ZnO pellet. The
mean diameter of the ZnO spheres is 617 nm. The pump beam
spot on the sample surface is 8 mm in diameter. The incident
pumping intensities are (a) 6 MW/mm2 and (b) 11 MW/mm2.
The integration times are (a) 15 and (b) 3 s.
old pump intensity for a larger pump area was lower than
that for a smaller pump area, consistent with our previ-
ous finding.15

Previously we had seen that the size of random laser
cavities decreases with transport mean free path lt .16

Better confinement also results in higher cavity Q and,
therefore, in lower threshold. To test this hypothesis,
first we determined how the scattering strength of an in-
dividual sphere changes with the sphere’s size. The inset
of Fig. 3 shows the ratio of the scattering cross section to
the geometric cross section relative to sphere diameter d
at a lasing wavelength of 375 nm. In the calculation we
used the effective refractive index n 5 1.7 for the ZnO
spheres. The dotted lines indicate the range of the diam-
eters of ZnO spheres that we fabricated. Thus the range
of monodisperse ZnO sphere sizes in our random lasing
experiment covered the first few Mie resonances at the
ZnO emission wavelength. The Mie resonances were
broad owing to the relatively low refractive index of ZnO
spheres. Scattering cross section ssc exhibited a drastic
increase with sphere diameter d before reaching the first
Mie resonance. In such densely packed systems as ours,
the scattering strength of a single particle can be signifi-
cantly modified by the interactions. The CBS experi-
ment allowed us to measure the dependence of the trans-
port mean free path lt on the sphere diameter directly.

In our CBS measurements the angular resolution was
0.01°. lt was measured at three wavelengths with three
laser sources: a cw He–Ne laser (l 5 633 nm), a mode-
locked Ti:sapphire laser (l 5 792 nm), and the second
harmonics of the Ti:sapphire laser (l 5 400 nm). All the
probe beams were well collimated to a spot of 4-mm-
diameter on the pellet surface. To obtain a speckle-free
CBS cone we, rotated the pellet at ;100 rpm about an
axis normal to the pellet’s flat surface. Figure 4 shows
the CBS cones of a ZnO pellet (d 5 233 nm) at three
wavelengths. We derived the transport mean free path ll
from the full width at half-maximum of a CBS cone after
taking the surface reflection into account.17

Figure 5 shows transport mean free path lt versus ZnO
particle diameter d at three wavelengths. First we can

Fig. 3. Measured incident pump intensity at lasing threshold
Ith versus ZnO sphere diameter d. Circles and squares corre-
spond to pump spot diameters of 8 and 16 mm, respectively. In-
set, calculated normalized scattering cross section ssc /sg of a
single ZnO sphere as a function of its diameter d.
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see that, for all three l, the transport mean free path lt
varied as d varied. When d increased, lt first decreased
rapidly and then saturated. For l 5 400 nm, lt de-
creased from 4.4 mm at d 5 85 nm to 0.6 mm at
d 5 172 nm. lt was more than seven times shorter for
only an 87-nm change of the sphere diameter. For
l 5 633 nm, lt decreased from 19.5 mm at 85 nm to 3.1
mm at 299 nm; it was more than six times shorter for an
;200 nm change in d. For l 5 792 nm, lt decreased
from 25 mm at 114 nm to 3.3 mm at 355 nm, approxi-
mately eight times shorter after a 240-nm change. So
the decrease was most abrupt for l 5 400 nm. However,
after lt /d of all three measurements was plotted versus
the dimensionless parameter y 5 nd/l (inset of Fig. 5),
the dependence of lt /d on y became universal. In Section
3 below we shall see that the crossover from rapid de-

Fig. 4. Measured CBS cones of the same ZnO pellet at three
wavelengths l. The mean diameter of the ZnO spheres is 233
nm.

Fig. 5. Measured transport mean free path lt versus ZnO
sphere diameter d at wavelengths l 5 400, 633, 792 nm. Inset,
measured lt /d versus nd/l.
crease to saturation can be explained by the transition
from the Rayleigh18 weak-scattering regime to the Mie
strong-scattering regime, which is governed by the pa-
rameter y. This transport mean-free-path measurement
confirms our hypothesis about the direct relation between
lt and the value of the lasing threshold.

The lasing threshold varied as we excited different
parts of the same sample. In fact, the lasing thresholds
shown in Fig. 3 are the mean values of threshold pump
intensities. The statistical fluctuation of the lasing
threshold is an important property of a random laser. To
fully understand the random laser’s behavior, we mea-
sured the variance of the lasing threshold pump intensi-
ties. Experimentally, we shifted the pump spot across
the sample and recorded the lasing threshold pump inten-
sity Ith . The diameter of the excitation spot was kept
constant. Then we calculated the mean value ^Ith& and
its standard deviation std(Ith) 5 @Š(Ith 2 ^Ith&)2

‹#1/2.
The normalized standard deviation was dg/^g&
5 std(Ith)/^Ith&. We found experimentally that the vari-
ance for 400 threshold data has the same value as that for
200 data. Therefore we used 200 threshold data to get
the variance of the lasing threshold. Table 1 lists some of
our experimental results. The standard deviation of the
lasing threshold decreased with increasing sphere diam-
eter d. However, for the largest d the standard deviation
increased slightly. As discussed above, in the pellets
composed of larger ZnO spheres, shorter lt resulted in
smaller lasing cavities.

Within a constant pump area there are more random
laser cavities available. The improved averaging within
the pump area leads to smaller fluctuation of the lasing
threshold. This explains the decrease in the deviation of
the lasing threshold with increasing sphere diameter d.
Typically there are many spheres within the pumped re-
gion. Although the particle configurations change with
the pump positions, different pump regions of the same
sample are statistically equivalent. However, when the
ZnO spheres are as large as 617 nm, the number of
spheres within the pumped region is rather small. At
different pump positions, the number of spheres and their
configuration can be quite different. This may cause
more fluctuation in lasing threshold. To test the above
explanation we increased the pump area to 15 mm in di-
ameter and measured the variance of lasing threshold for
two samples (d 5 137 nm and d 5 299 nm). The nor-
malized deviation for the d 5 137 nm sample was
dg/^g& 5 11%. It was larger than the 7% deviation of
the d 5 299 nm sample that had shorter lt . We also
compared the fluctuation of the lasing threshold for the

Table 1. Fluctuation of Lasing Threshold in Five
Samples with 5-mm Pump Area

Sample
Number

d
(nm)

l t
(mm)

^Ith&
(MW/mm2)

std(Ith)
(MW/mm2)

dg/^g&
(%)

1 137 1.21 20.8 3.5 17
2 172 0.58 19.1 2.0 11
3 299 0.55 19.6 1.5 8
4 355 0.53 16.8 1.2 7
5 617 0.61 17.4 1.7 10
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same sample at different pump diameters s. For d
5 5 137 nm, dg/^g& 5 17% at s 5 5 mm, larger than
dg/^g& 5 11% at s 5 15 mm. In the smaller pumped re-
gion, fewer random laser cavities are available, leading to
larger threshold fluctuation. For d 5 299 nm the two de-
viations were similar, dg/^g& 5 8% at s 5 5 mm and
dg/^g& 5 7% for 15 mm. This may be due to the accuracy
of our threshold measurement. Because of power fluc-
tuation of our pump laser, we could not resolve the small
difference in threshold fluctuation.

3. THEORY
For a quantitative understanding of our experimental re-
sults, we calculated the transport mean free path as well
as the scattering mean free path. We also simulated the
lasing threshold for both TE and TM polarization in two-
dimensional (2D) random systems.

A. Transport Length in a Closely Packed System of
Monodisperse Spheres
Calculation of the scattering length is relatively easier
than calculation of lt . If scattering is weak, i.e., if klsc
@ 1, frequency dispersion becomes simple (the on-shell
approximation is valid), which allows for a simple
solution6:

lsc~v! 5
1

rssc~v!
, (1)

where r is the density of scatterers and ssc(v) is
frequency-dependent scattering strength (cross section) of
an individual particle. Here, only the scattering charac-
teristics of a single scattering center enter into the ex-
pression for lsc . This is certainly an approximation that
is satisfied well in the weak-scattering limit. Indeed,
when scattering becomes stronger, light propagation can
no longer be regarded as a sequence of scattering events
from one particle at a time: Dependent scattering be-
comes important. When interaction between scatterers
is insignificant, one can find a connection between lsc and
lt—our quantity of interest:

lt~v! 5
lsc~v!

1 2 ^cos u~v!&
, (2)

where u is the scattering angle and ^ & signifies an angu-
lar average weighted by the differential cross section.
The denominator of Eq. (2) accounts for angular depen-
dence of the scattering cross section. For a coherent
beam (lsc) the scattering angle is of no importance: Once
scattering occurs, the photon is removed from the beam,
regardless of the new direction. The scattering direction
can be close to the original direction of propagation, which
would affect how the energy is transferred diffusely. The
presence of ^cos u(v)& accounts for the change in direction
of propagation.

In a closely packed mixture of spherical scatterers the
regime of weak, independent scattering can still be satis-
fied when particles are small compared to the wavelength
of light, i.e., the Rayleigh limit, x 5 2pr/l ! 1. Here x
is the so-called size parameter related to parameter nd/l
that we use in this paper, and r is the particle radius.
Scattering is dominated by dipole scattering, where the
cross section can be written in the leading order in x as18

ssc 5
8

3
x4S n2 2 1

n2 1 2
D 2

sg , (3)

where sg is the geometrical cross section pr2. Small x
expansion of ^cos u(v)& starts with a quadratic term and,
therefore, would lead to higher-order correction in Eq. (2).
In our system the scattering cross section is not the only
source of particle-size dependence of lt . Indeed, when
the particle size was reduced under constant filling frac-
tion f, density r changed as r 5 f/(4pr3/3). Finally, in
the Rayleigh limit we obtained

lsc . lt .
l

4fp4 S l

d D 3S n2 1 2

n2 2 1
D 2

. (4)

Strong third-power dependence on the particle diameter
resulted in a sharp decrease in the transport length seen
in the experiment (Fig. 5). This approximation broke
down at18 x . 0.8 or, in terms of particle size,
d . 100 nm, which corresponds to the transition to the
strong scattering regime to be discussed below. The pre-
dicted crossover size was in good agreement with the ex-
periment.

For larger sizes, individual sphere scattering becomes
so strong that the interaction between scatterers cannot
be ignored. This means that ssc can no longer be de-
scribed by Eq. (3). One of the straightforward ap-
proaches to improving Eqs. (1) and (2) in this regime is to
calculate the second-order correction in density. This
turns out to be a difficult task; exact calculations could be
performed for a Gaussian fluctuation model of correlated
disorder.19 This model, well suited for the porous silica
sample of Ref. 19, may not give all the structure that re-
sulted from the sample of monodisperse spheres consid-
ered in this paper.

Another highly accurate approximation that is widely
used for calculating lsc is the coherent potential approxi-
mation (CPA).6,20,21 Within the CPA one calculates the
effective dielectric constant (its imaginary part is related
to lsc) of the medium, taking into consideration the micro-
structure of the system. For monodisperse spheres, one
considers a single sphere surrounded by an air shell, em-
bedded in the effective medium. Self-consistency re-
quires the disappearance of scattering in the forward di-
rection. Extensions of CPA allow for more-complex
scattering units as well as for the correction that is due to
modified dispersion,21 which becomes important22 in
strong-scattering cases.

To determine the transport mean free path,
Busch et al.23 proposed to calculate s t 5 * dVssc(V)@1
2 cos(u)# for the CPA unit, where the integral of the solid
angle is taken. Comparing this expression with Eqs. (1)
and (2), one can see that this is an extension of the weak-
scattering formula into the strong-scattering regime, re-
placing the real single scatterer by an effective scatterer.

In the strong-scattering regime CPA calculations with
needed corrections20,21,23,24 become increasingly compli-
cated and computationally heavy. In the remainder of
this section we present a relatively easy way to calculate
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lsc and lt for a monodisperse ensemble of dielectric
spheres with large size parameter x 5 kr.

The solution of the scattering problem of a single di-
electric sphere, the Mie solution, is well known.18,25 Re-
cently it was proposed to use truncated multipole expan-
sions to solve the multisphere problem (see Ref. 9 and
references therein). Within this generalized multisphere
Mie solution one expands the electric field inside and out-
side each sphere in vector spherical harmonics; then the
field incident upon a sphere is the sum of the incoming
plane wave and fields scattered by all other spheres. By
matching the boundary conditions on the sphere surfaces
one obtains a linear system on the spherical harmonic co-
efficients, which is solved by recursion.9 To obtain scat-
tering coefficients one adds the individual scattered fields
in the far-field zone. The computation time depends
strongly on size parameter x, as the number of multipoles
needed for convergence increases with x. We note from
the SEM images that the ZnO particles, apart from size
dispersion, are not perfect spheres. In our calculation
the shape of the particles is assumed to be exactly spheri-
cal. This is a usual assumption in all theoretical models
that include CPA. Like size dispersion, shape deforma-
tion of ZnO particles will smooth out any sharp resonance
features found in the modeling. However, lack of sharp
resonances in the regime of relatively small size param-
eter x will diminish the effect of shape deformation.

Like Busch et al.23 and Busch and Soukoulis,24 we de-
fine lsc and lt in the strongly scattering regime as in Eqs.
(1) and (2), but instead of basing our calculations of ssc(v)
and ^cos(u)& on the CPA we calculate these quantities for
the individual spheres inside the finite clusters. More
precisely, we (i) generate 10 clusters, each of 5 or 10 ran-
domly arranged dielectric spheres with filling fraction
f . 0.5; (ii) solve the scattering problem, using the gener-
alized multisphere Mie code; (iii) find ssc,i(v) and ^cos(ui)&
for each sphere in the cluster, averaged over 24 angular
orientations of the cluster and 2 polarizations of the inci-
dent field; and (iv) compute average ssc(v) and ^cos(u)&
over all spheres in the cluster and in the 10 random con-
figurations. To match our experimental setup we chose
spheres with refractive index n 5 1.7 and nd/l
P @0, 4#.

It is illuminating to note that s t , defined in Ref. 23, in
a lossless system is a called radiative pressure cross sec-
tion, spr .18,26 In the more general case of absorbing par-
ticles,

spr 5 sext 2 ssc^cos~u!& 5 sabs 1 ssc @1 2 ^cos~u!&#,
(5)

where sext and sabs are extinction and absorption cross
sections, respectively. Equation (5), after multiplication
by density r, leads to the well-known27 diffusion formula
l21 5 labs

21 1 lt
21. This fact allows us to extend our ap-

proach to absorbing media as well; absorbing media are
not addressed further in the present paper. We should
also stress that our calculations become incorrect when lsc
becomes larger than the size of the cluster, which restricts
us to y 5 nd/l . 1. This is, however, the region where
the weak-scattering approximation described at the be-
ginning of this section gives reliable results. Therefore
the combination of the weak-scattering approximation
with the cluster-based calculation gives continuous cover-
age for practically all values of y.

The results of the calculations outlined above are pre-
sented in Figs. 6 and 7. The inset of Fig. 6 shows a sig-
nificant modification of the scattering efficiency of the
particles in the cluster as a result of interaction among
particles. When the resonant scatterers with scattering
cross sections larger than their geometrical cross sections
are packed closely together, hybridization caused by inter-
action (dependent scattering) occurs. As a result,
^ ssc&/sg saturates at ;f 22/3, the square of the average

Fig. 6. Calculated scattering length lsc normalized by sphere di-
ameter d calculated for clusters of 5 (dashed curve) and 10 (solid
thinner curve) spheres as a function of normalized particle size
nd/l. The solid thicker curve represents lsc calculated within
an independent scattering approximation. The dashed–dotted
curve gives the energy-density CPA result24 for f 5 0.5,
n 5 1.7. Inset, calculated scattering efficiencies ssc /sg of a
stand-alone single sphere (darker solid curve) and of spheres in
clusters of 5 (dashed curve) and 10 (lighter solid curve) particles.

Fig. 7. Calculated transport mean free path lt normalized by
sphere diameter d calculated for clusters of 5 (dashed curve) and
10 (thinner solid curve) spheres as a function of normalized par-
ticle size nd/l. The thicker solid curve represents lt calculated
within an independent scattering approximation. Inset, calcu-
lated value of ^cos(u)& of a stand-alone single sphere (thicker solid
curve), and spheres in clusters of 5 (dashed curve) and 10 (thin-
ner solid curve) particles.
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(dimensionless) distance between scatterers. When such
saturation occurs, lsc

21 . rf 22/3sg } (df 21/3)21. Nor-
malized by the particle size, lsc /d appears to be a con-
stant, as can be seen from Fig. 6. The residual structure
can be traced back to the single-particle resonances and
would probably not survive a small-sized dispersion,
which would be inevitable in the experiment. In Fig. 6
we have also plotted the scattering length calculated with
the energy-density CPA method24 (dashed–dotted curve).
For the CPA calculation we used the same parameters as
for the calculation by the cluster method: l 5 375 nm,
d 5 @0 nm, 900 nm#, n 5 1.7, and filling fraction
f 5 0.5. In the region of applicability of the cluster
method (nd/l . 1) we observed that the values of lsc ob-
tained with the cluster method are ;30% smaller than
those given by the CPA. This discrepancy may be par-
tially due to the finite size of the cluster.

In the inset of Fig. 7 we have plotted @1 2 ^cos(u)&#21

for a particle in a cluster. The first obvious characteristic
is that the scattering within the cluster is highly aniso-
tropic. This anisotropy may be attributed to the fact that
many scatterers lie close to boundary and may not sense
the local environment as well as those inside the cluster.
We did not, however, notice any systematic difference in
^cos(u)& for these two types of particle. Another impor-
tant consequence of combining lsc and ^cos(u)& in Eq. (1) is
the disappearance of most of the irregular structure in-
herited from lsc . Indeed, lt is a strikingly smoother func-
tion of the particle size, which reproduces well the experi-
mentally observed situation reported in Section 2. The
similarity between lt calculated for clusters of 5 and 10
spheres and the fact that lt is smaller than the cluster
size demonstrate that we have captured the most impor-
tant effects of dependent scattering. Even though ex-
tending the calculations to larger clusters would improve
our results, it would not change them significantly. The
absence of systematic differences in scattering properties
among the particles in the cluster further confirms this
conclusion.

B. Numerical Simulation of the Laser Threshold and
Its Fluctuations
To find the lasing threshold we assume that it is deter-
mined solely by the mode of the lowest radiative loss, the
highest quality factor Qm . This is a simplification that
neglects nonuniformity of the gain in the system. We be-
lieve, however, that qualitative dependence should not be
affected by this assumption. The system under consider-
ation is a 2D array of passive dielectric rods with refrac-
tive index n 5 2.2 and a filling fraction of 0.5. When we
changed the size (diameter) of the rods, nd/l0
P @0.2, 2#, we kept the physical size of the system con-
stant at 2 mm 3 2 mm with wavelength l0 5 375 nm. To
determine the quality factor of the least leaky mode, we
launched a pulse with a bandwidth of ;10 nm centered at
l0 . After initial excitation the modes in the excited fre-
quency region decayed with time. After a sufficient time,
only one mode, that with the highest Q, dominated the
spectrum, as was evidenced by the stabilized field distri-
bution in the sample. In this regime the total energy
stored in the system followed a single exponential decay
with time: E } Re@exp 2ivm(1 1 i/2Qm)t#. From this
dependence, frequency vm and quality factor Qm were de-
termined by use of a Fourier transform. As the lasing
threshold is inversely proportional to the maximum Q, we
define the lasing threshold in our system as g [ 1/Qm .
For 100 examples of disorder we calculated the mean
value of the lasing threshold ^g& and its standard devia-
tion, dg. To make a comparison with experiments done
in three dimensions we performed calculations for both
TM (E field parallel to the cylinder axis) and TE (H field
parallel to the cylinder axis) polarization. It can be
shown that Maxwell’s equations for TM polarization are
equivalent to scalar equations. For this reason, TM po-
larization is sometimes called s polarization, as opposed
to p or TE polarization. For TE polarization, two compo-
nents of the electric field are available, which makes the
experiments more like three-dimensional experiments.

The squares in Figs. 8 and 9 show the results for TM
polarization. One can see that there are three minima of
lasing threshold, at nd/l 5 0.6, 1, 1.4. As the values of
dg remain approximately the same (Fig. 9), they lead to
sharp peaks of dg/^g&. These peaks can be shown to be
related to the bandgaps of the ordered sample with the
same filling ratio. Preliminary results related to the
bandgap of the spectrum were reported in Ref. 28, with a
report of a more-detailed study planned, those early re-
sults are not discussed further in this paper. Apart from
bandgap-related minima of ^g&, and more relevant to the
current discussion, the dependence of threshold on size is
featureless. The threshold is almost constant, with no
increase at the small-particle size, in contrast to the ex-
perimental result reported earlier in this paper and to the
numerical calculation for TE polarization (Fig. 8). In-
deed, TE polarization does show a drastic decrease of ^g&
at nd/l . 0.5, which is similar to the characteristic size
both in experiment and in the three-dimensional (3D) the-
oretical prediction for lt . Naturally the question arises:
Why does TM polarization show such a remarkable differ-
ence from TE polarization?

Fig. 8. Calculated average lasing threshold ^g& 5 ^1/Q& as a
function of dimensionless particle size. Squares and circles rep-
resent TM and TE polarization, respectively. Error bars are too
small to be shown. Inset, calculated scattering efficiency of a di-
electric cylinder with n 5 2.2 for TE (thinner curve) and TM
(thicker curve) polarization versus the dimensionless diameter.
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To answer the above question we plotted the scattering
efficiency, Qsc 5 ssc /sg (not to be confused with cavity Q),
for a single cylinder (Fig. 8, inset): Thin and thick curves
represent TE and TM polarization, respectively. One can
see the significant difference in the characteristic particle
size when the value of Qsc increases above 1. This is the
size, in fact, at which the weak Rayleigh scattering fails
and one has to account for the interactions between par-
ticles. For TM modes the increase in the lasing thresh-
old (as well as in lt) should occur at nd/l . 0.2. Inciden-
tally, this is the smallest value that we could reach
numerically without jeopardizing numerical accuracy.
So the answer to the question posed above is that we sim-
ply did not reach the transition that should occur at yet a
smaller particle size. This difference in transition size
for TE and TM modes has a simple physical explanation.
For thin dielectric cylinders, as in three dimensions, scat-
tering is dominated by dipolar scattering, for which ana-
lytical results are available18:

QTM 5
p2

8
x3~n2 2 1 !2,

QTE 5
p2

4
x3S n2 2 1

n2 1 1
D 2

,
QTM

QTE
5

~n2 1 1 !2

2
.

(6)

One can see that the difference in scattering strengths ra-
tio is ;17 and reflects the stronger polarizability of a thin
cylinder in the direction along the axis compared with the
polarizability in the direction perpendicular to the axis.
This numerical prefactor leads to the difference in char-
acteristic size for two polarizations. Moreover, in the
saturated regime the value of the average lasing thresh-
old is relatively lower for TM than that for TE waves.
This can be explained by stronger interference effects in
TM polarization, which are equivalent to a scalar wave.
In this respect the interference is harder to achieve for TE
modes and leads to a higher threshold, as one can see
from Fig. 8.

Fig. 9. Calculated standard deviation of lasing threshold dg as a
function of dimensionless particle size. Squares and circles, TM
and TE polarization, respectively.
The difference between TE and TM lasing thresholds
also is manifested in fluctuations (Fig. 9). Computa-
tional time has limited the number of disorder realiza-
tions and led to the relatively large error bars. Never-
theless, one can still conclude that there is a general
trend to increasing fluctuations dg on decrease of the par-
ticle size, as was shown in the experiment. This increase
occurs at different sizes for TE and TM polarizations, in
line with the discussion above. Fluctuation for a TE field
is generally higher than that for a TM field (Fig. 9). As
mentioned above, the availability of two electric field po-
larizations in the former case is the cause of this differ-
ence.

We should also mention that one needs to exercise cau-
tion in comparing the results of 2D simulations with 3D
experiments. Indeed, the dependence of the lasing
threshold and of its fluctuation on the particle size is a
dimension-dependent effect. As it can be seen from Table
1 and Fig. 9, dg showed similar trends in the 2D simula-
tions and the 3D experiments. However, the normalized
standard deviation dg/^g& behavior is different: in two di-
mensions it increased with decreasing d (Table 1),
whereas in two dimensions it decreased for TE polariza-
tion (not shown). Further simulations performed on 3D
random systems are necessary to resolve this discrepancy.

4. CONCLUSIONS
We prepared samples of monodisperse ZnO spheres of dif-
ferent sizes. Measurements of the lasing thresholds in
these samples showed a drastic decrease in the value of
the average lasing threshold from d 5 85 nm to
d 5 137 nm. We attribute this phenomenon to the re-
duction of the random laser’s cavity size. That size is be-
lieved to be related to transport mean free path lt .16 The
rapid decrease of lt was obtained in theoretical calcula-
tions as well as inferred from experimental measure-
ments of the coherent backscattering cone. However,
when the particle size increased from 137 to 617 nm the
lasing threshold remained nearly constant; so did the
transport mean free path. This behavior was interpreted
in terms of dependent scattering, and it contradicts the
expectation based on a low-density approximation.

We have also reported, for the first time to our knowl-
edge, measurements of the fluctuation of the lasing
threshold. In our samples the standard deviation of the
lasing threshold decreased with increasing ZnO particle
size. This decrease was also caused by a reduction of the
random laser’s cavity size. Inasmuch as the excitation
area was kept constant, a small cavity size resulted in a
large number cavities excited by a pump pulse. Im-
proved averaging within the excitation spot led to smaller
fluctuation of the laser threshold. This behavior was also
observed in our finite-difference time-domain simulations
of 2D random media.
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